946 research outputs found

    Constraints on massive gravity theory from big bang nucleosynthesis

    Full text link
    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also discussed in the framework of the PAMELA experiment.Comment: 5 page

    Severity of cardiomyopathy associated with adenine nucleotide translocator-1 deficiency correlates with mtDNA haplogroup

    Get PDF
    Mutations of both nuclear and mitochondrial DNA (mtDNA)-encoded mitochondrial proteins can cause cardiomyopathy associated with mitochondrial dysfunction. Hence, the cardiac phenotype of nuclear DNA mitochondrial mutations might be modulated by mtDNA variation. We studied a 13-generation Mennonite pedigree with autosomal recessive myopathy and cardiomyopathy due to an SLC25A4 frameshift null mutation (c.523delC, p.Q175RfsX38), which codes for the heart-muscle isoform of the adenine nucleotide translocator-1. Ten homozygous null (adenine nucleotide translocator-1(-/-)) patients monitored over a median of 6 years had a phenotype of progressive myocardial thickening, hyperalaninemia, lactic acidosis, exercise intolerance, and persistent adrenergic activation. Electrocardiography and echocardiography with velocity vector imaging revealed abnormal contractile mechanics, myocardial repolarization abnormalities, and impaired left ventricular relaxation. End-stage heart disease was characterized by massive, symmetric, concentric cardiac hypertrophy; widespread cardiomyocyte degeneration; overabundant and structurally abnormal mitochondria; extensive subendocardial interstitial fibrosis; and marked hypertrophy of arteriolar smooth muscle. Substantial variability in the progression and severity of heart disease segregated with maternal lineage, and sequencing of mtDNA from five maternal lineages revealed two major European haplogroups, U and H. Patients with the haplogroup U mtDNAs had more rapid and severe cardiomyopathy than those with haplogroup H

    IMMUNOPATHOLOGICAL STUDIES OF ORTHOTOPIC HUMAN LIVER ALLOGRAFTS

    Get PDF
    Twenty-six specimens obtained from twenty human orthotopic liver allografts 10-968 days after transplantation were studied by light microscopy, electron microscopy, and immunofluorescence. The main lesions consisted of mononuclear-cell infiltration around the portal tracts, centrilobular cholestasis, liver-cell atrophy and reticulin collapse, obliterative intimal thickening of hepatic arteries, and fibrosis. Moderate amounts of IgG and/or IgM and complement (β1C/β1A globulin or C'lq) were observed in four of the liver samples and smaller deposits were present in another five. A further three specimens contained IgG without complement. IgA was detected in only one of the samples. The immunoglobulins were found in the walls of the portal and central veins and of the sinusoids in all thirteen positive liver samples, in the walls of branches of the hepatic artery in three, and in the cytoplasm of some of the mononuclear cells infiltrating the portal tracts in nine of the specimens. Fibrinogen was seen in eight of the samples, usually in the spaces of Disse. Accumulations of immunoglobulins and complement were less frequent in liver than in kidney and heart allografts. These findings suggest that in the failure of human liver allografts cell-mediated immunity and non-immunological factors may be more important than humoral antibody. © 1972

    The Formation of Cosmic Structures in a Light Gravitino Dominated Universe

    Get PDF
    We analyse the formation of cosmic structures in models where the dark matter is dominated by light gravitinos with mass of 100 100 eV -- 1 keV, as predicted by gauge-mediated supersymmetry (SUSY) breaking models. After evaluating the number of degrees of freedom at the gravitinos decoupling (gg_*), we compute the transfer function for matter fluctuations and show that gravitinos behave like warm dark matter (WDM) with free-streaming scale comparable to the galaxy mass scale. We consider different low-density variants of the WDM model, both with and without cosmological constant, and compare the predictions on the abundances of neutral hydrogen within high-redshift damped Ly--α\alpha systems and on the number density of local galaxy clusters with the corresponding observational constraints. We find that none of the models satisfies both constraints at the same time, unless a rather small Ω0\Omega_0 value (\mincir 0.4) and a rather large Hubble parameter (\magcir 0.9) is assumed. Furthermore, in a model with warm + hot dark matter, with hot component provided by massive neutrinos, the strong suppression of fluctuation on scales of \sim 1\hm precludes the formation of high-redshift objects, when the low--zz cluster abundance is required. We conclude that all different variants of a light gravitino DM dominated model show strong difficulties for what concerns cosmic structure formation. This gives a severe cosmological constraint on the gauge-mediated SUSY breaking scheme.Comment: 28 pages,Latex, submitted for publication to Phys.Rev.

    EMA-amplicon-based sequencing informs risk assessment analysis of water treatment systems

    Get PDF
    Illumina amplicon-based sequencing was coupled with ethidium monoazide bromide (EMA) pre-treatment to monitor the total viable bacterial community and subsequently identify and prioritise the target organisms for the health risk assessment of the untreated rainwater and rainwater treated using large-volume batch solar reactor prototypes installed in an informal settlement and rural farming community. Taxonomic assignments indicated that Legionella and Pseudomonas were the most frequently detected genera containing opportunistic bacterial pathogens in the untreated and treated rainwater at both sites. Additionally, Mycobacterium, Clostridium sensu stricto and Escherichia/Shigella displayed high (≥80%) detection frequencies in the untreated and/or treated rainwater samples at one or both sites. Numerous exposure scenarios (e.g. drinking, cleaning) were subsequently investigated and the health risk of using untreated and solar reactor treated rainwater in developing countries was quantified based on the presence of L. pneumophila, P. aeruginosa and E. coli. The solar reactor prototypes were able to reduce the health risk associated with E. coli and P. aeruginosa to below the 1 × 10−4 annual benchmark limit for all the non-potable uses of rainwater within the target communities (exception of showering for E. coli). However, the risk associated with intentional drinking of untreated or treated rainwater exceeded the benchmark limit (E. coli and P. aeruginosa). Additionally, while the solar reactor treatment reduced the risk associated with garden hosing and showering based on the presence of L. pneumophila, the risk estimates for both activities still exceeded the annual benchmark limit. The large-volume batch solar reactor prototypes were thus able to reduce the risk posed by the target bacteria for non-potable activities rainwater is commonly used for in water scarce regions of sub-Saharan Africa. This study highlights the need to assess water treatment systems in field trials using QMRA

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
    corecore