48 research outputs found

    Gaia Data Release 1: the archive visualisation service

    Get PDF
    Context. The first Gaia data release (DR1) delivered a catalogue of astrometry and photometry for over a billion astronomical sources. Within the panoplyof methods used for data exploration, visualisation is often the starting point and even the guiding reference for scientific thought. However, this is a volume of data that cannot be efficiently explored using traditional tools, techniques, and habits. Aims. We aim to provide a global visual exploration service for the Gaia archive, something that is not possible out of the box for most people. The service has two main goals. The first is to provide a software platform for interactive visual exploration of the archive contents, using common personal computers and mobile devices available to most users. The second aim is to produce intelligible and appealing visual representations of the enormous information content of the archive. Methods. The interactive exploration service follows a client-server design. The server runs close to the data, at the archive, and is responsible for hiding as far as possible the complexity and volume of the Gaia data from the client. This is achieved by serving visual detail on demand. Levels of detail are pre-computed using data aggregation and subsampling techniques. For DR1, the client is a web application that provides an interactive multi-panel visualisation workspace as well as a graphical user interface. Results. The Gaia archive Visualisation Service offers a web-based multi-panel interactive visualisation desktop in a browser tab. It currently provides highly configurable 1D histograms and 2D scatter plots of Gaia DR1 and the Tycho-Gaia Astrometric Solution (TGAS) with linked views. An innovative feature is the creation of ADQL queries from visually defined regions in plots. These visual queries are ready for use in the Gaia Archive Search/data retrieval service. In addition, regions around user-selected objects can be further examined with automatically generated SIMBAD searches. Integration of the Aladin Lite and JS9 applications add support to the visualisation of HiPS and FITS maps. The production of the all-sky source density map that became the iconic image of Gaia DR1 is described in detail. Conclusions. On the day of DR1, over seven thousand users accessed the Gaia Archive visualisation portal. The system, running on a single machine, proved robust and did not fail while enabling thousands of users to visualise and explore the over one billion sources in DR1. There are still several limitations, most noticeably that users may only choose from a list of pre-computed visualisations. Thus, other visualisation applications that can complement the archive service are examined. Finally, development plans for Data Release 2 are presented

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∼3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∼0.3 mas should be added to the parallax uncertainties. For the subset of ∼94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∼10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∼0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Gaia Data Release 1:The archive visualisation service

    Get PDF
    Context: The first Gaia data release (DR1) delivered a catalogue of astrometry and photometry for over a billion astronomical sources. Within the panoply of methods used for data exploration, visualisation is often the starting point and even the guiding reference for scientific thought. However, this is a volume of data that cannot be efficiently explored using traditional tools, techniques, and habits. Aims: We aim to provide a global visual exploration service for the Gaia archive, something that is not possible out of the box for most people. The service has two main goals. The first is to provide a software platform for interactive visual exploration of the archive contents, using common personal computers and mobile devices available to most users. The second aim is to produce intelligible and appealing visual representations of the enormous information content of the archive. Methods: The interactive exploration service follows a client-server design. The server runs close to the data, at the archive, and is responsible for hiding as far as possible the complexity and volume of the Gaia data from the client. This is achieved by serving visual detail on demand. Levels of detail are pre-computed using data aggregation and subsampling techniques. For DR1, the client is a web application that provides an interactive multi-panel visualisation workspace as well as a graphical user interface. Results: The Gaia archive Visualisation Service offers a web-based multi-panel interactive visualisation desktop in a browser tab. It currently provides highly configurable 1D histograms and 2D scatter plots of Gaia DR1 and the Tycho-Gaia Astrometric Solution (TGAS) with linked views. An innovative feature is the creation of ADQL queries from visually defined regions in plots. [abridged]Comment: 16 pages, 9 figures, accepted for publication in Astronomy & Astrophysics. Abstract abridged for arXiv submission. The service and image gallery here described are accessible from the Gaia archive "visualization" tab at http://gea.esac.esa.int/archive

    Gaia Data Release 1: Testing parallaxes with local Cepheids and RR Lyrae stars

    Get PDF
    Context. Parallaxes for 331 classical Cepheids, 31 Type II Cepheids, and 364 RR Lyrae stars in common between Gaia and the Hipparcos and Tycho-2 catalogues are published in Gaia Data Release 1 (DR1) as part of the Tycho-Gaia Astrometric Solution (TGAS). Aims. In order to test these first parallax measurements of the primary standard candles of the cosmological distance ladder, which involve astrometry collected by Gaia during the initial 14 months of science operation, we compared them with literature estimates and derived new period-luminosity (PL), period-Wesenheit (PW) relations for classical and Type II Cepheids and infrared PL, PL-metallicity (PLZ), and optical luminosity-metallicity (M V -[Fe/H]) relations for the RR Lyrae stars, with zero points based on TGAS. Methods. Classical Cepheids were carefully selected in order to discard known or suspected binary systems. The final sample comprises 102 fundamental mode pulsators with periods ranging from 1.68 to 51.66 days (of which 33 with σ Ω /Ω < 0.5). The Type II Cepheids include a total of 26 W Virginis and BL Herculis stars spanning the period range from 1.16 to 30.00 days (of which only 7 with σ Ω /Ω < 0.5). The RR Lyrae stars include 200 sources with pulsation period ranging from 0.27 to 0.80 days (of which 112 with σ Ω /Ω < 0.5). The new relations were computed using multi-band (V,I,J,K s ) photometry and spectroscopic metal abundances available in the literature, and by applying three alternative approaches: (i) linear least-squares fitting of the absolute magnitudes inferred from direct transformation of the TGAS parallaxes; (ii) adopting astrometry-based luminosities; and (iii) using a Bayesian fitting approach. The last two methods work in parallax space where parallaxes are used directly, thus maintaining symmetrical errors and allowing negative parallaxes to be used. The TGAS-based PL,PW,PLZ, and M V - [Fe/H] relations are discussed by comparing the distance to the Large Magellanic Cloud provided by different types of pulsating stars and alternative fitting methods. Results. Good agreement is found from direct comparison of the parallaxes of RR Lyrae stars for which both TGAS and HST measurements are available. Similarly, very good agreement is found between the TGAS values and the parallaxes inferred from the absolute magnitudes of Cepheids and RR Lyrae stars analysed with the Baade-Wesselink method. TGAS values also compare favourably with the parallaxes inferred by theoretical model fitting of the multi-band light curves for two of the three classical Cepheids and one RR Lyrae star, which were analysed with this technique in our samples. The K-band PL relations show the significant improvement of the TGAS parallaxes for Cepheids and RR Lyrae stars with respect to the Hipparcos measurements. This is particularly true for the RR Lyrae stars for which improvement in quality and statistics is impressive. Conclusions. TGAS parallaxes bring a significant added value to the previous Hipparcos estimates. The relations presented in this paper represent the first Gaia-calibrated relations and form a work-in-progress milestone report in the wait for Gaia-only parallaxes of which a first solution will become available with Gaia Data Release 2 (DR2) in 2018. © ESO, 2017

    Gaia Data Release 1: Open cluster astrometry: performance, limitations, and future prospects

    Get PDF
    Context. The first Gaia Data Release contains the Tycho-Gaia Astrometric Solution (TGAS). This is a subset of about 2 million stars for which, besides the position and photometry, the proper motion and parallax are calculated using Hipparcos and Tycho-2 positions in 1991.25 as prior information.Aims. We investigate the scientific potential and limitations of the TGAS component by means of the astrometric data for open clusters.Methods. Mean cluster parallax and proper motion values are derived taking into account the error correlations within the astrometric solutions for individual stars, an estimate of the internal velocity dispersion in the cluster, and, where relevant, the effects of the depth of the cluster along the line of sight. Internal consistency of the TGAS data is assessed.Results. Values given for standard uncertainties are still inaccurate and may lead to unrealistic unit-weight standard deviations of least squares solutions for cluster parameters. Reconstructed mean cluster parallax and proper motion values are generally in very good agreement with earlier HIPPARCOS-based determination, although the Gaia mean parallax for the Pleiades is a significant exception. We have no current explanation for that discrepancy. Most clusters are observed to extend to nearly 15 pc from the cluster centre, and it will be up to future Gaia releases to establish whether those potential cluster-member stars are still dynamically bound to the clusters.Conclusions. The Gaia DR1 provides the means to examine open clusters far beyond their more easily visible cores, and can provide membership assessments based on proper motions and parallaxes. A combined HR diagram shows the same features as observed before using the HIPPARCOS data, with clearly increased luminosities for older A and F dwarfs

    Gaia Data Release 2 Mapping the Milky Way disc kinematics

    Get PDF
    Context. The second Gaia data release (Gaia DR2) contains high-precision positions, parallaxes, and proper motions for 1.3 billion sources as well as line-of-sight velocities for 7.2 million stars brighter than G(RVS) = 12 mag. Both samples provide a full sky coverage. Aims. To illustrate the potential of Gaia DR2, we provide a first look at the kinematics of the Milky Way disc, within a radius of several kiloparsecs around the Sun. Methods. We benefit for the first time from a sample of 6.4 million F-G-K stars with full 6D phase-space coordinates, precise parallaxes (sigma((omega) over bar)/(omega) over bar Results. Gaia DR2 allows us to draw 3D maps of the Galactocentric median velocities and velocity dispersions with unprecedented accuracy, precision, and spatial resolution. The maps show the complexity and richness of the velocity field of the galactic disc. We observe streaming motions in all the components of the velocities as well as patterns in the velocity dispersions. For example, we confirm the previously reported negative and positive galactocentric radial velocity gradients in the inner and outer disc, respectively. Here, we see them as part of a non-axisymmetric kinematic oscillation, and we map its azimuthal and vertical behaviour. We also witness a new global arrangement of stars in the velocity plane of the solar neighbourhood and in distant regions in which stars are organised in thin substructures with the shape of circular arches that are oriented approximately along the horizontal direction in the U - V plane. Moreover, in distant regions, we see variations in the velocity substructures more clearly than ever before, in particular, variations in the velocity of the Hercules stream. Conclusions. Gaia DR2 provides the largest existing full 6D phase-space coordinates catalogue. It also vastly increases the number of available distances and transverse velocities with respect to Gaia DR1. Gaia DR2 offers a great wealth of information on the Milky Way and reveals clear non-axisymmetric kinematic signatures within the Galactic disc, for instance. It is now up to the astronomical community to explore its full potential.Peer reviewe

    Worldwide trends in population-based survival for children, adolescents, and young adults diagnosed with leukaemia, by subtype, during 2000–14 (CONCORD-3) : analysis of individual data from 258 cancer registries in 61 countries

    Get PDF
    Background Leukaemias comprise a heterogenous group of haematological malignancies. In CONCORD-3, we analysed data for children (aged 0–14 years) and adults (aged 15–99 years) diagnosed with a haematological malignancy during 2000–14 in 61 countries. Here, we aimed to examine worldwide trends in survival from leukaemia, by age and morphology, in young patients (aged 0–24 years). Methods We analysed data from 258 population-based cancer registries in 61 countries participating in CONCORD-3 that submitted data on patients diagnosed with leukaemia. We grouped patients by age as children (0–14 years), adolescents (15–19 years), and young adults (20–24 years). We categorised leukaemia subtypes according to the International Classification of Childhood Cancer (ICCC-3), updated with International Classification of Diseases for Oncology, third edition (ICD-O-3) codes. We estimated 5-year net survival by age and morphology, with 95% CIs, using the non-parametric Pohar-Perme estimator. To control for background mortality, we used life tables by country or region, single year of age, single calendar year and sex, and, where possible, by race or ethnicity. All-age survival estimates were standardised to the marginal distribution of young people with leukaemia included in the analysis. Findings 164563 young people were included in this analysis: 121328 (73·7%) children, 22963 (14·0%) adolescents, and 20272 (12·3%) young adults. In 2010–14, the most common subtypes were lymphoid leukaemia (28205 [68·2%] patients) and acute myeloid leukaemia (7863 [19·0%] patients). Age-standardised 5-year net survival in children, adolescents, and young adults for all leukaemias combined during 2010–14 varied widely, ranging from 46% in Mexico to more than 85% in Canada, Cyprus, Belgium, Denmark, Finland, and Australia. Individuals with lymphoid leukaemia had better age-standardised survival (from 43% in Ecuador to ≥80% in parts of Europe, North America, Oceania, and Asia) than those with acute myeloid leukaemia (from 32% in Peru to ≥70% in most high-income countries in Europe, North America, and Oceania). Throughout 2000–14, survival from all leukaemias combined remained consistently higher for children than adolescents and young adults, and minimal improvement was seen for adolescents and young adults in most countries. Interpretation This study offers the first worldwide picture of population-based survival from leukaemia in children, adolescents, and young adults. Adolescents and young adults diagnosed with leukaemia continue to have lower survival than children. Trends in survival from leukaemia for adolescents and young adults are important indicators of the quality of cancer management in this age group.peer-reviewe

    Global survival trends for brain tumors, by histology: analysis of individual records for 556,237 adults diagnosed in 59 countries during 2000–2014 (CONCORD-3)

    Get PDF
    Background: Survival is a key metric of the effectiveness of a health system in managing cancer. We set out to provide a comprehensive examination of worldwide variation and trends in survival from brain tumors in adults, by histology. Methods: We analyzed individual data for adults (15–99 years) diagnosed with a brain tumor (ICD-O-3 topography code C71) during 2000–2014, regardless of tumor behavior. Data underwent a 3-phase quality control as part of CONCORD-3. We estimated net survival for 11 histology groups, using the unbiased nonparametric Pohar Perme estimator. Results: The study included 556,237 adults. In 2010–2014, the global range in age-standardized 5-year net survival for the most common sub-types was broad: in the range 20%–38% for diffuse and anaplastic astrocytoma, from 4% to 17% for glioblastoma, and between 32% and 69% for oligodendroglioma. For patients with glioblastoma, the largest gains in survival occurred between 2000–2004 and 2005–2009. These improvements were more noticeable among adults diagnosed aged 40–70 years than among younger adults. Conclusions: To the best of our knowledge, this study provides the largest account to date of global trends in population-based survival for brain tumors by histology in adults. We have highlighted remarkable gains in 5-year survival from glioblastoma since 2005, providing large-scale empirical evidence on the uptake of chemoradiation at population level. Worldwide, survival improvements have been extensive, but some countries still lag behind. Our findings may help clinicians involved in national and international tumor pathway boards to promote initiatives aimed at more extensive implementation of clinical guidelines

    The Gaia mission

    Get PDF
    Gaia is a cornerstone mission in the science programme of the EuropeanSpace Agency (ESA). The spacecraft construction was approved in 2006, following a study in which the original interferometric concept was changed to a direct-imaging approach. Both the spacecraft and the payload were built by European industry. The involvement of the scientific community focusses on data processing for which the international Gaia Data Processing and Analysis Consortium (DPAC) was selected in 2007. Gaia was launched on 19 December 2013 and arrived at its operating point, the second Lagrange point of the Sun-Earth-Moon system, a few weeks later. The commissioning of the spacecraft and payload was completed on 19 July 2014. The nominal five-year mission started with four weeks of special, ecliptic-pole scanning and subsequently transferred into full-sky scanning mode. We recall the scientific goals of Gaia and give a description of the as-built spacecraft that is currently (mid-2016) being operated to achieve these goals. We pay special attention to the payload module, the performance of which is closely related to the scientific performance of the mission. We provide a summary of the commissioning activities and findings, followed by a description of the routine operational mode. We summarise scientific performance estimates on the basis of in-orbit operations. Several intermediate Gaia data releases are planned and the data can be retrieved from the Gaia Archive, which is available through the Gaia home page. http://www.cosmos.esa.int/gai

    Gaia Data Release 2 Observations of solar system objects

    Get PDF
    CONTEXT: The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center repository. Positions are provided for each Gaia observation at CCD level. As additional information, complementary to astrometry, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations. AIMS: We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality. METHODS: To exploit the main data product for the solar system in Gaia DR2, which is the epoch astrometry of asteroids, it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The role of both random and systematic errors is described. The distribution of residuals allowed us to identify possible contaminants in the data set (such as stars). Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP). RESULTS: The overall astrometric performance is close to the expectations, with an optimal range of brightness G ∼ 12 − 17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G ∼ 12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by comparisons to the archive data and by preliminary tests on the detection of subtle non-gravitational effects
    corecore