484 research outputs found

    HST astrometry in the Orion Nebula Cluster: census of low-mass runaways

    Get PDF
    We present a catalog of high-precision proper motions in the Orion Nebula Cluster (ONC), based on Treasury Program observations with the Hubble Space Telescope's (HST) ACS/WFC camera. Our catalog contains 2,454 objects in the magnitude range of 14.2<mF775W<24.714.2<m_{\rm F775W}<24.7, thus probing the stellar masses of the ONC from ∼\sim0.4 M⊙M_\odot down to ∼\sim0.02 M⊙M_\odot over an area of ∼\sim550 arcmin2^2. We provide a number of internal velocity dispersion estimates for the ONC that indicate a weak dependence on the stellar location and mass. There is good agreement with the published velocity dispersion estimates, although nearly all of them (including ours at σv,x=0.94\sigma_{v,x}=0.94 and σv,y=1.25\sigma_{v,y}=1.25 mas yr−1^{-1}) might be biased by the overlapping young stellar populations of Orion A. We identified 4 new ONC candidate runaways based on HST and the Gaia DR2 data, all with masses less than ∼\sim1 M⊙M_\odot. The total census of known candidate runaway sources is 10 -- one of the largest samples ever found in any Milky Way open star cluster. Surprisingly, none of them has the tangential velocity exceeding 20 km s−1^{-1}. If most of them indeed originated in the ONC, it may compel re-examination of dynamical processes in very young star clusters. It appears that the mass function of the ONC is not significantly affected by the lost runaways.Comment: 16 pages, 10 figures, 5 tables. Accepted for publication in A

    Ground-based astrometry with wide field imagers. V. Application to near-infrared detectors: HAWK-I@VLT/ESO

    Full text link
    High-precision astrometry requires accurate point-spread function modeling and accurate geometric-distortion corrections. This paper demonstrates that it is possible to achieve both requirements with data collected at the high acuity wide-field K-band imager (HAWK-I), a wide-field imager installed at the Nasmyth focus of UT4/VLT ESO 8m telescope. Our final astrometric precision reaches ~3 mas per coordinate for a well-exposed star in a single image with a systematic error less than 0.1 mas. We constructed calibrated astro-photometric catalogs and atlases of seven fields: the Baade's Window, NGC 6656, NGC 6121, NGC 6822, NGC 6388, NGC 104, and the James Webb Space Telescope calibration field in the Large Magellanic Cloud. We make these catalogs and images electronically available to the community. Furthermore, as a demonstration of the efficacy of our approach, we combined archival material taken with the optical wide-field imager at the MPI/ESO 2.2m with HAWK-I observations. We showed that we are able to achieve an excellent separation between cluster members and field objects for NGC 6656 and NGC 6121 with a time base-line of about 8 years. Using both HST and HAWK-I data, we also study the radial distribution of the SGB populations in NGC 6656 and conclude that the radial trend is flat within our uncertainty. We also provide membership probabilities for most of the stars in NGC 6656 and NGC 6121 catalogs and estimate membership for the published variable stars in these two fields.Comment: 36 pages (included appendix), 13 tables, 35 figures (26 in low resolution), accepted for publication in Astronomy and Astrophysics. Online materials will be soon available on CDS. Meanwhile, online materials can be requested directly to the first autho

    The Southern Proper Motion Program III. A Near-Complete Catalog to V=17.5

    Full text link
    We present the third installment of the Yale/San Juan Southern Proper Motion Catalog, SPM3. Absolute proper motions, positions, and photographic B,V photometry are given for roughly 10.7 million objects, primarily stars, down to a magnitude of V=17.5. The Catalog covers an irregular area of 3700 square degrees, between the declinations of -20 and -45 degrees, excluding the Galactic plane. The proper-motion precision, for well-measured stars, is estimated to be 4.0 mas/yr. Unlike previous releases of the SPM Catalog, the proper motions are on the International Celestial Reference System by way of Hipparcos Catalog stars, and have an estimated systematic uncertainty of 0.4 mas/yr. The SPM3 Catalog is available via electronic transfer,(http://www.astro.yale.edu/astrom/) As an example of the potential of the SPM3 proper motions, we examine the Galactocentric velocities of a group of metal-poor, main-sequence A stars. The majority of these exhibit thick-disk kinematics, lending support to their interpretation as thick-disk blue stragglers, as opposed to being an accreted component.Comment: 23 pages, 10 figures, accepted for publication in Astronomical Journa

    Lick Northern Proper Motion Program. III. Lick NPM2 Catalog

    Full text link
    The Lick Northern Proper Motion (NPM) program, a two-epoch (1947-1988) photographic survey of the northern two-thirds of the sky (Dec. > -23 deg), has measured absolute proper motions, on an inertial system defined by distant galaxies, for 380,000 stars from 8 <B < 18. The 1993 NPM1 Catalog contains 148,940 stars in 899 fields outside the Milky Way's zone of avoidance. The 2003 NPM2 Catalog contains 232,062 stars in the remaining 347 NPM fields near the plane of the Milky Way. This paper describes the NPM2 star selection, plate measurements, astrometric and photometric data reductions, and catalog compilation. The NPM2 Catalog contains 120,000 faint (B > 14) anonymous stars for astrometry and galactic studies, 92,000 bright (B < 14) positional reference stars, and 35,000 special stars chosen for astrophysical interest. The NPM2 proper motions are on the ICRS system, via Tycho-2 stars, to an accuracy of 0.5 mas/yr in each field. RMS proper motion precision is 6 mas/yr. Positional errors average 80 mas at the mean plate epoch 1968, and 200 mas at the NPM2 catalog epoch 2000. NPM2 photographic photometry errors average 0.18 mag in B, and 0.20 mag in B-V. The NPM2 Catalog and the updated (to J2000) NPM1 Catalog are available at the CDS Strasbourg data center and on the NPM WWW site (http://www.ucolick.org/~npm). The NPM2 Catalog completes the Lick Northern Proper Motion program after a half-century of work by three generations of Lick Observatory astronomers. The NPM Catalogs will serve as a database for research in galactic structure, stellar kinematics, and astrometry.Comment: 44 pages, 6 figures, accepted for publication in September 2004 Astronomical Journa

    A large local rotational speed for the Galaxy found from proper-motions: Implications for the mass of the Milky-Way

    Get PDF
    Predictions from a Galactic Structure and Kinematic model are compared to the absolute proper-motions of about 30,000 randomly selected stars with 9<BJ≤199 < B_{\rm J} \le 19 derived from the Southern Proper-Motion Program (SPM) toward the South Galactic Pole. The absolute nature of the SPM proper-motions allow us to measure not only the relative motion of the Sun with respect to the local disk, but also, and most importantly, the overall state of rotation of the local disk with respect to galaxies. The SPM data are best fit by models having a solar peculiar motion of +5 km~s−1^{-1} in the V-component (pointing in the direction of Galactic rotation), a large LSR speed of 270 km~s−1^{-1}, and a disk velocity ellipsoid that points towards the Galactic center. We stress, however, that these results rest crucially on the assumptions of both axisymmetry and equilibrium dynamics. The absolute proper-motions in the U-component indicate a solar peculiar motion of 11.0±1.511.0 \pm 1.5 km~s−1^{-1}, with no need for a local expansion or contraction term. The implications of the large LSR speed are discussed in terms of gravitational mass of the Galaxy inferred from the most recent and accurate determination for the proper-motion of the LMC. We find that our derived value for the LSR is consistent both with the mass of the Galaxy inferred from the motion of the Clouds (3−4×1012M⊙3 - 4 \times 10^{12} M_\odot to ∼50\sim 50 kpc), as well as the timing argument, based on the binary motion of M31 and the Milky Way, and Leo I and the Milky Way (≥1.2×1012M⊙\ge 1.2 \times 10^{12} M_\odot to ∼200\sim 200 kpc).Comment: 7 pages (AAS Latex macro v4.0), 2 B&W postscript figures, accepted for publication on ApJ, Letters sectio

    Trumpler 20 - an old and rich open cluster

    Full text link
    We show that the open cluster Trumpler 20, contrary to the earlier findings, is actually an old Galactic open cluster. New CCD photometry and high-resolution spectroscopy are used to derive the main parameters of this cluster. At [Fe/H]=-0.11 for a single red giant star, the metallicity is slightly subsolar. The best fit to the color-magnitude diagrams is achieved using a 1.3 Gyr isochrone with convective overshoot. The cluster appears to have a significant reddening at E(B-V)=0.46 (for B0 spectral type), although for red giants this high reddening yields the color temperature exceeding the spectroscopic T_eff by about 200 K. Trumpler 20 is a very rich open cluster, containing at least 700 members brighter than M_V=+4. It may extend over the field-of-view available in our study at 20'x20'.Comment: 7 pages, 5 figures; accepted for publication in MNRA

    The effects of differential reddening and stellar rotation on the appearance of multiple populations in star clusters: the case of Trumpler 20

    Full text link
    We present a detailed analysis of the upper main sequence of the 1.3 Gyr old open cluster Trumpler 20. High accuracy BV photometry combined with the Very Large Telescope/FLAMES medium-resolution spectroscopy of 954 stars is essential to understanding the unusual appearance of the color-magnitude diagram (CMD), initially suggesting multiple populations in Trumpler 20. We show that differential reddening is a dominant contributor to the apparent splitting/widening of the main-sequence turnoff region. At its extreme, the excess differential reddening reaches Delta(B-V)=0.1 while the adopted minimum reddening for the cluster is E(B-V)=0.36. A unique sample of measured projected rotational velocities indicates that stellar rotation is high near the main-sequence turnoff, reaching vsin i=180 km/s. By dividing the upper main-sequence stars into equal groups of slow and fast rotators, we find that fast rotators have a marginal blueshift of delta(V-I)=-0.01, corresponding to a difference in the median vsin i of 60 km/s between these subsamples. We conclude that stellar rotation has an insignificant effect on the morphology of the upper main sequence of this intermediate-age open cluster. Trumpler 20 appears to contain a single coeval population of stars but there is evidence that the red clump is extended.Comment: 16 pages, 5 figures, accepted for publication in ApJ
    • …
    corecore