25 research outputs found

    Hot Electron Dynamics in Ultrafast Multilayer Epsilon-Near-Zero Metamaterial

    Get PDF
    Realizing remarkable tunability in optical properties without sacrificing speed is critical to obtain all optical ultrafast devices. In this work, we investigate the ultrafast temporal behavior of optically tunable epsilon-near-zero (ENZ) metamaterials, operating in the visible spectral range. To perform this the ultrafast dynamics of the hot electrons is acquired by femtosecond pump-probe spectroscopy and studied based on two-temperature model (2TM). We show that pumping with femtosecond pulses changes the effective permittivity of the metamaterial more than 400 %. This significant modulation is more pronounced in ENZ region and we confirm this by the 2TM. The realized ultrafast modulation in effective permittivity, along with the ultrashort relaxation time of 3.3 ps, opens a new avenue towards ultrafast photonic applications.Comment: 5 figure

    Electrically Tunable Strongly Coupled Epsilon-Near-Zero and Plasmonic Hybrid Mode

    Get PDF
    Achieving active tunability of light and matter interaction is of great interest as it opens a new avenue for exploring various high-performance photonic devices. In this prospect, developing a novel way to achieve active tuning of a strongly coupled system is vital. Here, we demonstrated an active tuning of the coupling strength in a strongly coupled system comprised of a thin ITO film as epsilon-near-zero (ENZ) material and gold nanorods as plasmonic resonators. The incorporation of these two components exhibits strong coupling that manifests as spectral splitting in the transmission spectra in the near-infrared spectral range.acceptedVersionPeer reviewe

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    A century of trends in adult human height

    Get PDF

    Gate Tunable Coupling of Epsilon-Near-Zero and Plasmonic Modes

    Get PDF
    In this work, an active tuning of the coupling strength in a strongly coupled system comprised of a thin epsilon-near-zero material and gold nanorods as plasmonic resonators is demonstrated. A novel gating scheme is developed where an ionic liquid is employed to bias the coupled system and tune the coupling in transmission mode. A significant tuning of the coupled resonance up to 30 nm is observed by changing the bias voltages from 0 to 4.5 V. This control mechanism on strong coupling opens exciting opportunities for various disruptive applications by offering advanced control and tunability on strongly coupled systems.publishedVersionPeer reviewe

    Bright off-axis directional emission with plasmonic corrugations

    Get PDF
    In this work, a new plasmonic bulls-eye structure is introduced to efficiently harvest the emitted light from diamond nitrogen vacancy (NV) centers. We show that the presence of a simple metal sub-layer underneath of a conventional bulls-eye antenna, separated by a dielectric layer, results in the spontaneous emission enhancement and increment in out-coupled light intensity. High Purcell factor is accessible in such a structure, which consequently boosts efficiency of the radiated light intensity from the structure. The structure shows considerable enhancement in far-field intensity, about three times higher than that of a one-side corrugated (conventional) optimized structure. In addition, we study for the first time asymmetric structures to steer emitted beams in two-axis. Our results show that spatial off-axial steering over a cone is approachable by introducing optimal asymmetries to grooves and ridges of the structure. The steered light retains a level of intensity even higher than conventional symmetric structures. A high value of directivity of 16 for off-axis steering is reported.publishedVersionPeer reviewe

    Plasmon-modulated photoluminescence enhancement in hybrid plasmonic nano-antennas

    Get PDF
    In this work, we performed a systematic study on a hybrid plasmonic system to elucidate a new insight into the mechanisms governing the fluorescent enhancement process. Our lithographically defined plasmonic nanodisks with various diameters act as receiver and transmitter nano-antennas to outcouple efficiently the photoluminescence of the coupled dye molecules. We show that the enhancement of the spontaneous emission rate arises from the superposition of three principal phenomena: (i) metal enhanced fluorescence, (ii) metal enhanced excitation and (iii) plasmon-modulated photoluminescence of the photoexcited nanostructures. Overall, the observed enhanced emission is attributed to the bi-directional near-field coupling of the fluorescent dye molecules to the localized plasmonic field of nano-antennas. We identify the role of exciton-plasmon coupling in the recombination rate of the sp-band electrons with d-band holes, resulting in the generation of particle plasmons. According to our comprehensive experimental analyses, the mismatch between the enhanced emission and the emission spectrum of the uncoupled dye molecules is attributed to the plasmon-modulated photoluminescence of the photoexcited hybrid plasmonic system.publishedVersionPeer reviewe
    corecore