126 research outputs found

    Feasibility and initial experience of assessment of mechanical dyssynchrony using cardiovascular magnetic resonance and semi-automatic border detection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The systolic dyssynchrony index (SDI) has been introduced as a measure of mechanical dyssynchrony using three-dimensional echocardiography to select patients who may benefit from cardiac resynchronization therapy (CRT). However, three-dimensional echocardiography may be inadequate in a number of patients with suboptimal acoustic window and no single echocardiographic measure of dyssynchrony has proven to be of value in selecting patients for CRT. Thus, the aim of this study was to determine the value of cardiovascular magnetic resonance (CMR) for the assessment of the SDI in patients with reduced LV function as well as in healthy controls using semi-automatic border tracking.</p> <p>Methods</p> <p>We investigated a total of 45 patients including 35 patients (65 ± 8 years) with reduced LV function (EF 30 ± 11%) and a wide QRS complex as well as 10 control subjects (42 ± 21 years, EF 70 ± 11%). For cine imaging a standard SSFP imaging sequence was used with a temporal resolution of 40 frames per RR-interval. Quantitative analysis was performed off-line using a software prototype for semi-automatic border detection. Global volumes, ejection fraction and the SDI were calculated in each subject. SDI was compared with standard echocardiographic parameters of dyssynchrony.</p> <p>Results</p> <p>The mean SDI differed significantly between patients (14 ± 5%) and controls (5 ± 2%, p < 0.001). An exponential correlation between the EF and the SDI was observed (r = -0.84; p < 0.001). In addition, a significant association between the SDI and the standard deviation of time to peak systolic motion of 12 LV segments (Ts-SD) determined by echocardiography was observed (r = 0.66, p = 0.002).</p> <p>Conclusion</p> <p>The results of this preliminary study suggest that CMR with semi-automatic border detection may be useful for the assessment of mechanical dyssynchrony in patients with reduced LV function.</p> <p>No trial registration due to recruitment period between October 2004 and November 2006</p

    Coulomb dissociation of O-16 into He-4 and C-12

    Get PDF
    We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    Get PDF
    The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96\sqrt s =1.96 TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBttˉ=0.128±0.025A_{\mathrm{FB}}^{t\bar{t}} = 0.128 \pm 0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Toward Large-Area Sub-Arcsecond X-Ray Telescopes

    Get PDF
    The future of x-ray astronomy depends upon development of x-ray telescopes with larger aperture areas (>1 sq m) and finer angular resolution(100 sq m) of lightweight (1 kg/sq m areal density) high quality mirrors-possibly entailing active (in-space adjustable) alignment and figure correction. This paper discusses relevant programmatic and technological issues and summarizes progress toward large area sub-arcsecond x-ray telescopes. Key words: X-ray telescopes, x-ray optics, active optics, electroactive devices, silicon mirrors, differential deposition, ion implantation

    Coulomb dissociation of 16O into 4He and 12C

    Get PDF
    We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(a,?)16O fusion reaction and to reach lower center-ofmass energies than measured so far. The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-To-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision

    Governing by Panic: The Politics of the Eurozone Crisis

    Full text link

    Simulations of flow in thermochemical nonequilibrium using adaptive mesh refinement

    No full text
    Adequate resolution of the flow field is vital to ensure that simulations are sufficiently spatially converged. However, a too finely resolved mesh can lead to excessive computational times. Adaptive Mesh Refinement (AMR) algorithms are able to balance these two constraints by increasing the resolution only where it is needed. In this work, a block-Structured Adaptive Mesh Refinement (SAMR) solver has been coupled to the Mutation++ thermochemical library to enable high resolution simulations of flows in thermochemical nonequilibrium. The solver has been verified using the Method of Manufactured Solutions and computations of hypersonic flows are presented, demonstrating the thermochemical model and the ability of AMR algorithms to resolve flow features
    corecore