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Abstract. We measured the Coulomb dissociation of 16O into 4He and 12C
within the FAIR Phase-0 program at GSI Helmholtzzentrum für Schwerionen-
forschung Darmstadt, Germany. From this we will extract the photon dis-
sociation cross section 16O(α,γ)12C, which is the time reversed reaction to
12C(α,γ)16O. With this indirect method, we aim to improve on the accuracy
of the experimental data at lower energies than measured so far.
The expected low cross section for the Coulomb dissociation reaction and close
magnetic rigidity of beam and fragments demand a high precision measurement.
Hence, new detector systems were built and radical changes to the R3B setup
were necessary to cope with the high-intensity 16O beam. All tracking detectors
were designed to let the unreacted 16O ions pass, while detecting the 12C and
4He.

1 The 12C(α,γ)16O fusion reaction

During their evolution stars will undergo several burning phases and reach eventually the so
called triple-alpha process where three 4He nuclei are fused into carbon. At the same time
several other processes may take place, whereby the fusion of carbon and helium into oxygen
is of particular interest. DeBoer [1] and Aliotta [2] give an excellent overview of the recent
developments. The 12C(α,γ)16O fusion reaction determines the carbon-to-oxygen ratio at
the end of the helium burning phase and, hence, the further evolution and fate of the star.
Furthermore, this reaction is also crucial for the carbon-to-oxygen ratio in the universe and
thus for the creation of the essential elements for life as we know it on earth.

The fate of stars in the mass range between about 14 M⊙ and 60 M⊙ is still unknown
because of the uncertainty of the 12C(α,γ)16O reaction [3, 4]. To generate reliable nucleosyn-
thesis simulations for these astrophysical purposes, the reaction rate of 12C(α,γ)16O in the
astrophysical relevant energy region around 300 keV has to be known with uncertainties of
less than 10%.
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Theoretical calculations and extrapolation from higher energies result in an extremely
low value of about 10−17 b, which poses a significant challenge for direct measurements.
Available experimental data down to 1 MeV show sometimes large uncertainties of up to
100% [1].

With their larger cross sections indirect measurements promise to improve the experimen-
tal data quality in the low center-of-mass energy region.

2 Coulomb dissociation of 16O at R3B

In order to determine the 12C(α,γ)16O fusion reaction, there are different experimental ap-
proaches available, see e.g. [5, 6]. The indirect method of Coulomb dissociation of 16O is
particularly promising and can bridge the gap to the stellar energy regime. Baur, Bertulani
and Rebel proposed this measurement in 1986 [7] for the first time and performed detailed
calculations later [8, 9]. The Coulomb dissociation cross section is far larger than the di-
rect measurement and profits from the large number of virtual photons if it is performed at
relativistic energies.

We measured the Coulomb dissociation of 16O into 4He and 12C in inverse kinematics at
the R3B setup, within the FAIR Phase-0 campaign at GSI Helmholtzzentrum für Schwerio-
nenforschung in Darmstadt Germany. A high-intensity 16O beam impinged on a selection of
different targets. In the Coulomb field of the target nuclei the ion can be excited and even-
tually break up into 4He and 12C. At beam energies of 300 MeV/nucleon, using a lead target
of 80 mg/cm2, and an 16O beam of 2·109 ions per second we estimated a count rate of 30
counts per day at a center-of-mass energy of Ecm = 1 MeV. With the recorded data in the
energy range of 800 keV to 5 MeV we expect a significant reduction of statistic uncertainties
compared to the available data. Typical systematic uncertainties of Coulomb dissociation
measurements in the past were about 10% to 15%. However the systematic uncertainties in
our case will be small since we can use the well measured resonances at higher energies for
an absolute normalization.

A low Z target like carbon contributes mainly to the nuclear breakup reaction. By sub-
tracting the nuclear contribution from breakup reactions occurring in the lead target we are
able to extract the desired Coulomb dissociation reaction cross section. Possible interference
effects can be studied by using an intermediate mass target like Sn [10].

2.1 The setup

The magnetic rigidity of the unreacted 16O beam and the fragments 12C and 4He are close
since the mass-to-charge-number ratio A/Z = 2. The scintillation detectors can measure
intensities of up to 106 ions per second. To allow the high-intensity unreacted beam to pass
the tracking detectors and measure both fragments, radical changes to the R3B setup [11, 12]
were necessary. All detectors where designed and positioned so as to let the unreacted ions
pass.

Figure 1 shows a sketch of the modified R3B setup. All detectors relevant for track-
ing, charge identification and intensity measurement are positioned inside a vacuum chamber
connected to each other. This allows a direct connection to the accelerator without the use
of windows which would drastically increase unwanted reactions with the beam. Two active
collimators, ROLU (Rechts-Oben-Links-Unten), in front of the target cut the beam dimension
by creating a veto. During the beam setup phase they helped to center the 16O beam on the
target. Around the target the CALIFA (CALorimeter for In-Flight detection of gamme-rays
and high energy charged pArticles) calorimeter measures γ-rays from excited fragments.
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Figure 1. Sketch of the experimental setup at R3B as it was used for the Coulomb dissociation of 16O.
Two active collimators, ROLU, in front of the target cut the beam dimension by creating a veto focus
and help to center the ion beam on the target. γ-rays from excited 12C are measured in the CALIFA
calorimeter. For tracking of the fragments two fiber detectors in front of the magnet GLAD measure the
x- and y-position. Two pairs of fiber detectors downstream from GLAD measure the x-position. The
time-of-flight walls ToFD and ToFI allow to extract the charge of the fragments, based on their energy
loss. All tracking detectors had slits or a hole and were mounted on drives to allow the unreacted beam
to pass without damaging the detectors or causing high dead time by its high intensity. A secondary
electron transmission monitor (SEETRAM) detector as well as a scintillator and an ionization chamber
measured the beam intensity.

In front of the superconducting magnet GLAD (GSI Large Acceptance Dipole) a pair of
250 µm thick 10x10 cm2 organic fiber scintillators measures the x- and y-positions of the
fragments. Mounted on x/y drives a 3 mm diameter hole can be adjusted to let the unreacted
16O beam pass. The x-position of the deflected fragments are measured with 1000 µm thick
50x50 cm2 fiber scintillators positioned behind GLAD in two pairs. These detectors are
mounted on x-drives to adjust the gap. A small rotation about the y-axis increases their
detection efficiency and each fiber is read out by two multianode photomultipliers on each
end. The fiber detector setup can be seen in figure 2.

The time-of-flight walls ToFD (Time of Flight Detector) and ToFI (Time of Flight Inner
detector) generate the trigger and measure the flight time and charge Z of the fragments. ToFD
consists of two layers plastic scintillator bars each 27 mm wide, 5 mm thick and 1000 mm
long read out by two single anode photomultipliers from each end. Several bars in the center
are dismounted to let the unreacted beam pass. The gap in layer one is three bars wide while
in the second layer, which is shifted by the width of half a bar, a gap-width of two bars is
sufficient. Mounted in a light-tight housing the active area is roughly 1200x80 cm2. ToFI
consists of one layer with twelve 5 mm square scintillation bars covering the innermost bars
of ToFD for higher granularity at high intensities. Six bars on each side of the unreacted
beam path are mounted on x-drives to adjust the gap.

A SEETRAM (SEcondary Electron TRAnsmission Monitor) detector, a scintillator and
an ionization chamber positioned behind the time-of-flight walls are used to quantify the
beam at different intensities. This allows a careful calibration in the overlapping range
whereby SEETRAM can measure the highest intensities.
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Figure 2. Fiber scintillator detectors for fragment tracking. Left: Two fiber detectors with 250 µm
fibers, 10x10 cm2 active area, and a 3 mm diameter hole, mounted in front of the magnet. Right: Four
fiber detectors with 1000 µm fibers 50x50 cm2 active area mounted inside the vacuum chamber behind
GLAD. All detectors are mounted on drives to adjust the hole or gap.

2.2 The experimental campaign

The detection of all relevant fragments is of utmost importance. Therefore, prior to the ex-
periment with 16O beam, 4He beam was taken in May 2021. Sweeping all detectors through
the beam ensured careful threshold finding and calibration for particles with low Z. During
the experiment in June/July 2021 with 16O beam, the magnetic field was varied for a later
reconstruction of the detector positions while tracking the well known momenta of unreacted
ions. In total, we recorded 67 TB of data, where 89.6% of the runs were physics runs and
the rest tuning and sweep runs. In table 1, the targets used and the corresponding measured
hours are listed.

Unfortunately, in the tuning phase, it became clear that the accelerator could not provide
the 16O beam at 300 MeV/nucleon in a condition appropriate for the experiment. A switch to
500 MeV/nucleon improved the conditions, but limited the recorded statistics due to a lower
number of virtual photons in the region of interest. In addition, beam focus and position were
unstable. Therefore, we had to run with thinner targets at lower beam intensities and higher
dead times of the data acquisition system than expected, which further reduced the recorded
statistics.

Table 1. Targets, relative file size compared to recorded data of 67 TB and measured time. In total, we
measured for 247 hours.

Target Relative size in % Measured time in h
Pb 38 µm 74.03 167.5
Pb 77 µm 6.39 17.3
C 252 µm 6.85 15.5
C 423 µm 2.85 5.4
Sn 104 µm 5.77 12.1

empty 2.36 22.1
other targets 1.75 7.2

5

EPJ Web of Conferences 279, 04003 (2023)
NPA-X 2022

https://doi.org/10.1051/epjconf/202327904003



3 Data analysis
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Figure 3. Charge number of first particle measured by ToFD in one event vs. charge number of every
other particle in this event.

Figure 3 shows the calibrated charge number of the first hit in ToFD in an event versus all
other hits of this event. The Coulomb dissociation reaction products can be identified as (6,2)
or (2,6). Other charges that are visible are a result of other reactions or pile-up of events. To
identify matching pairs of the desired fragments, further cuts are necessary.
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Figure 4. Fiber number of one detector behind GLAD vs. deposited energy as Time-over-Threshold.
12C deposits more energy than 4He, and they can be easily identified.

With time-of-flight cuts on the fiber detectors and selecting only matching pairs, we can
separate 12C and 4He hits in the fiber detectors. In figure 4, the Time-over-Threshold for each
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fiber of one large fiber detector is shown. 12C deposits more energy than 4He and the two can
easily be separated. 4He shows a larger angular distribution than 12C.

We can use the well known momentum of the unreacted 16O beam to calibrate our detector
positions for tracking of the Coulomb dissociation reaction products. Using the information
from all detectors we can then reconstruct the momentum of the reaction products at a com-
mon target point and hence the center-of-mass energy in figure 5. We normalize the tracked
pairs to the number of incoming 16O particles measured by SEETRAM, the number of atoms
for the different targets used, the dead time, and a nuclear scaling factor. This scaling factor
is necessary since the nuclear contribution measured with carbon target is dependent on the
size of the target nuclei and thus needs to be rescaled for a lead target. By subtracting the
nuclear breakup reaction we can then extract the Coulomb dissociation cross section.
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Figure 5. Counts of tracked 12C and 4He pairs as a function of the center-of-mass energy normalized to
the number of incoming 16O, number of target atoms, dead time, and a nuclear scaling factor.
Left: Lead target, Right: Carbon target

The result is a very preliminary attempt in analyzing a small percentage of the recorded
data and needs more careful calibration and tracking in the near future.
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