65 research outputs found

    Veal, Michael E. and E. Tammy Kim, eds. 2016. Punk Ethnography: Artists and Scholars Listen to Sublime Frequencies.

    Get PDF

    Canto a tenore e altre polifonie sarde. Riflessioni e proposte attorno alla Convenzione UNESCO ICH 2003

    Get PDF
    The article examines the evolution of UNESCO's paradigms concerning the Convention for the Safeguarding of the Intangible Cultural Heritage (ICH 2003) compared to the Convention for the Protection of the World Cultural and Natural Heritage (1972). Specifically, employing an anthropological approach, the analysis centers on authenticity and cultural identity. As a case study, the article takes the "Canto a tenore, Sardinian pastoral songs," inscribed in the list of intangible cultural heritage due to its association with pastoralism. The objective is to contemplate the limitations and challenges associated with this designation and the broader issues surrounding ICH 2003. The article explores the journey undertaken by Sardinian singers and institutions following its recognition in 2005, culminating in Modas, the most recent initiative to study and preserve the practice of tenore singing. Through its activities, this project aspires to be more inclusive of polyphonic practices featuring multiple vocal components that have not yet found a place on UNESCO's list

    Constraints on millicharged dark matter and axion-like particles from timing of radio waves

    Get PDF
    We derive novel constraints on millicharged dark matter and ultralight axion-like particles using pulsar timing and fast radio burst observations. Millicharged dark matter affects the dispersion measure of the time of arrival of radio pulses in a way analogous to free electrons. Light pseudo-scalar dark matter, on the other hand, causes the polarization angle of radio signals to oscillate. We show that current and future data can set strong constraints in both cases. For dark matter particles of charge ϵe\epsilon e, these constraints are ϵ/mmilli108eV1{\epsilon}/{m_{\rm milli}} \lesssim 10^{-8}{\rm eV}^{-1}, for masses mmilli106m_{\rm milli}\gtrsim 10^{-6}\,eV. For axion-like particles, the analysis of signals from pulsars yields constraints in the axial coupling of the order of g/ma1013GeV1/(1022eV)g/m_a\lesssim 10^{-13} {\rm GeV}^{-1}/(10^{-22}{\rm eV}). Both bounds scale as (ρ/ρdm)1/2(\rho/\rho_{\rm dm})^{1/2} if the energy density ρ\rho of the components is a fraction of the total dark matter energy density ρdm\rho_{\rm dm}. We do a detailed study of both effects using data from two samples of pulsars in the galaxy and in globular clusters, as well as data from FRB 121102 and PSR J0437-4715. We show that in both cases actual pulsar data constrain a new region of the parameter space for these models, and will improve with future pulsar-timing observations.Comment: 6 pages, 2 figures; v3: to appear on PR

    The effect of mission duration on LISA science objectives

    Get PDF
    The science objectives of the LISA mission have been defined under the implicit assumption of a 4-years continuous data stream. Based on the performance of LISA Pathfinder, it is now expected that LISA will have a duty cycle of ≈0.75 , which would reduce the effective span of usable data to 3 years. This paper reports the results of a study by the LISA Science Group, which was charged with assessing the additional science return of increasing the mission lifetime. We explore various observational scenarios to assess the impact of mission duration on the main science objectives of the mission. We find that the science investigations most affected by mission duration concern the search for seed black holes at cosmic dawn, as well as the study of stellar-origin black holes and of their formation channels via multi-band and multi-messenger observations. We conclude that an extension to 6 years of mission operations is recommended.publishedVersio

    New horizons for fundamental physics with LISA

    Get PDF
    The Laser Interferometer Space Antenna (LISA) has the potential to reveal wonders about the fundamental theory of nature at play in the extreme gravity regime, where the gravitational interaction is both strong and dynamical. In this white paper, the Fundamental Physics Working Group of the LISA Consortium summarizes the current topics in fundamental physics where LISA observations of gravitational waves can be expected to provide key input. We provide the briefest of reviews to then delineate avenues for future research directions and to discuss connections between this working group, other working groups and the consortium work package teams. These connections must be developed for LISA to live up to its science potential in these areas

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Black holes, gravitational waves and fundamental physics: a roadmap

    Get PDF
    The grand challenges of contemporary fundamental physics—dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem—all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress. This write-up is an initiative taken within the framework of the European Action on 'Black holes, Gravitational waves and Fundamental Physics'

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF
    corecore