1,260 research outputs found

    The 2011 Outburst of Recurrent Nova T Pyx: X-ray Observations Expose the White Dwarf Mass and Ejection Dynamics

    Get PDF
    The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign. We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (~45 eV) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (~1 M_sun). The late turn-on time of the super-soft component yields a large nova ejecta mass (>~10^-5 M_sun), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a ~1 keV thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.Comment: Re-submitted to ApJ after revision

    Wikipedia as an encyclopaedia of life

    Get PDF
    In his 2003 essay E O Wilson outlined his vision for an “encyclopaedia of life” comprising “an electronic page for each species of organism on Earth”, each page containing “the scientific name of the species, a pictorial or genomic presentation of the primary type specimen on which its name is based, and a summary of its diagnostic traits.” Although the “quiet revolution” in biodiversity informatics has generated numerous online resources, including some directly inspired by Wilson's essay (e.g., "http://ispecies.org":http://ispecies.org, "http://www.eol.org":http://www.eol.org), we are still some way from the goal of having available online all relevant information about a species, such as its taxonomy, evolutionary history, genomics, morphology, ecology, and behaviour. While the biodiversity community has been developing a plethora of databases, some with overlapping goals and duplicated content, Wikipedia has been slowly growing to the point where it now has over 100,000 pages on biological taxa. My goal in this essay is to explore the idea that, largely independent of the efforts of biodiversity informatics and well-funded international efforts, Wikipedia ("http://en.wikipedia.org/wiki/Main_Page":http://en.wikipedia.org/wiki/Main_Page) has emerged as potentially the best platform for fulfilling E O Wilson’s vision

    Kaon Condensation and Lambda-Nucleon Loop in the Relativistic Mean-Field Approach

    Full text link
    The possibility of kaon condensation in high-density symmetric nuclear matter is investigated including both s- and p-wave kaon-baryon interactions within the relativistic mean-field (RMF) theory. Above a certain density, we have a collective Kˉs{\bar K}_s state carrying the same quantum numbers as the antikaon. The appearance of the Kˉs{\bar K}_s state is caused by the time component of the axial-vector interaction between kaons and baryons. It is shown that the system becomes unstable with respect to condensation of KK-Kˉs{\bar K}_s pairs. We consider how the effective baryon masses affect the kaon self-energy coming from the time component of the axial-vector interaction. Also, the role of the spatial component of the axial-vector interaction on the possible existence of the collective kaonic states is discussed in connection with Λ\Lambda-mixing effects in the ground state of high-density matter. Implications of KKˉsK{\bar K}_s condensation for high-energy heavy-ion collisions are briefly mentioned.Comment: 27 pages text, 8 figure

    Binary orbits as the driver of Îł-ray emission and mass ejection in classical novae

    Get PDF
    Classical novae are the most common astrophysical thermonuclear explosions, occurring on the surfaces of white dwarf stars accreting gas from companions in binary star systems. Novae typically expel ïżœ10,000 solar masses of material at velocities exceeding 1,000 km/s. However, the mechanism of mass ejection in novae is poorly understood, and could be dominated by the impulsive flash of the thermonuclear runaway, prolonged optically thick winds, or binary interaction with the nova envelope. Classical novae are now routinely detected in GeV gamma-rays, suggesting that relativistic particles are accelerated by strong shocks in nova ejecta. Here we present high-resolution imaging of the gamma-ray-emitting nova V959 Mon at radio wavelengths, showing that its ejecta were shaped by binary motion: some gas was expelled rapidly along the poles as a wind from the white dwarf, while denser material drifted out along the equatorial plane, propelled by orbital motion. At the interface between the equatorial and polar regions, we observe synchrotron emission indicative of shocks and relativistic particle acceleration, thereby pinpointing the location of gamma-ray production. Binary shaping of the nova ejecta and associated internal shocks are expected to be widespread among novae, explaining why many novae are gamma-ray emitters

    Selectivities of Potassium-Calcium and Potassium-Lead Exchange in Two Tropical Soils

    Get PDF
    Measurement of cation selectivity in soils provides important information about the affinity and binding strength of a particular cation on soil surfaces. Gaines-Thomas (KGT) selectivity coefficients were determined for a variety of K/Ca and K/Pb ratios on an Oxisol and Ultisol soil from Puerto Rico. The calculated KGT values indicated a preference for K+ over Ca2+ or Pb2+. The selectivity for Pb2+ was significantly greater than that for Ca2+ due to Pb2+\u27s larger hydrated charge density relative to that of Ca2+. The patterns of selectivity were independent of metal type. The selectivity of the Oxisol for Ca2+ or Pb2+ exhibited no trend and changed little with changes in divalent metal surface coverage. The Ultisol displayed a decrease in selectivity for Ca2+ and Pb2+ with increasing surface coverage of these ions. This was attributed to the presence of smectite in the Ultisol, which was able to partially collapse when K+ saturated. Some of the Pb sorption in the soils was due to chemisorption. The Oxisol chemisorbed 3000 mg Pb kg-1 while that value for the Ultisol was ≈1900 mg kg-1. The differences were due to the greater quantities of Fe/Al oxides and organic matter in the Oxisol relative to the Ultisol. Scanning electron microscopy-energy dispersive X-ray (SEM-EDX) spectroscopy detected discrete Pb-C phase in both soils. The C was from organic matter. Under experimental conditions, any Pb-carbonate phase would not have been stable. It was possible Pb was associated with organic sulfhydral groups. The selectivity exhibited by soil systems for various nutrient and heavy metals is important in elucidating how available these metals will be for plant/animal uptake as well as their mobility and stability in the soil environment

    Principles of Periodontology

    Get PDF
    Periodontal diseases are among the most common diseases affecting humans. Dental biofilm is a contributor to the etiology of most periodontal diseases. It is also widely accepted that immunological and inflammatory responses to biofilm components are manifested by signs and symptoms of periodontal disease. The outcome of such interaction is modulated by risk factors (modifiers), either inherent (genetic) or acquired (environmental), significantly affecting the initiation and progression of different periodontal disease phenotypes. While definitive genetic determinants responsible for either susceptibility or resistance to periodontal disease have yet to be identified, many factors affecting the pathogenesis have been described, including smoking, diabetes, obesity, medications, and nutrition. Currently, periodontal diseases are classified based upon clinical disease traits using radiographs and clinical examination. Advances in genomics, molecular biology, and personalized medicine may result in new guidelines for unambiguous disease definition and diagnosis in the future. Recent studies have implied relationships between periodontal diseases and systemic conditions. Answering critical questions regarding host‐parasite interactions in periodontal diseases may provide new insight in the pathogenesis of other biomedical disorders. Therapeutic efforts have focused on the microbial nature of the infection, as active treatment centers on biofilm disruption by non‐surgical mechanical debridement with antimicrobial and sometimes anti‐inflammatory adjuncts. The surgical treatment aims at gaining access to periodontal lesions and correcting unfavorable gingival/osseous contours to achieve a periodontal architecture that will provide for more effective oral hygiene and periodontal maintenance. In addition, advances in tissue engineering have provided innovative means to regenerate/repair periodontal defects, based upon principles of guided tissue regeneration and utilization of growth factors/biologic mediators. To maintain periodontal stability, these treatments need to be supplemented with long‐term maintenance (supportive periodontal therapy) programs

    1954: Abilene Christian College Bible Lectures - Full Text

    Get PDF
    Preface The 1954 Abilene Christian College Lectureship was one of the best attended and most successful in the history of the school. Considerable interest was manifested in the timely theme, “Overcoming Dangerous Tendencies,” and in the two special topics, “Ways and Means of Doing Mission Work,” and “Caring For Widows and Orphans.” The reports from the mission fields were highly stimulating, and all in all, the speeches were unusually high caliber. The Panel Discussions were also on timely subjects and well presented. They received a warm response, as did also the thirty classes that were conducted each day. These classes were taught by persons expert in their particular fields, and covered a wide range of interests to the faithful, working Christian. We at Abilene Christian College predict for this book of Lectures a wide and hearty reception, and believe that its reading will issue in profit to the individual and to the church at large. J. D. Thomas Lectureship Directo

    Provenance of the Early Mesoproterozoic Radium Creek Group in the northern Mount Painter Inlier: Correlating isotopic signatures to inform tectonic reconstructions

    Get PDF
    New in situ zircon LA-ICPMS geochronologic and Hf-isotope data from the Radium Creek Group within the Mount Painter Inlier provide important temporal constraints on the Early Mesoproterozoic palaeogeography of eastern Proterozoic Australia. The entire Radium Creek Group was deposited in a single basin forming phase, and has a maximum depositional age of 1595. ±. 3.7. Ma. Detrital zircon from these metasedimentary rocks have U-Pb age populations at ca. 1595. Ma, 1660-1680. Ma, 1710-1780. Ma, ca. 1850. Ma and ca. 2500. Ma. These grains are characterised by isotopically diverse and evolved sources, and have crystallised within predominantly felsic igneous host-rocks. The relative age spectra and isotopic character has more similarity with the Gawler Craton than the Arunta Block, Curnamona Province or the Mount Isa Inlier. These observations suggest that the Mount Painter Province was adjacent to the Gawler Craton in the Early Mesoproterozoic. Our data supports a coherent South Australian Craton at ca. 1595. Ma and a contiguous continental mass that included the North and South Australian cratons. The Mount Painter Inlier occupied a complex plate tectonic setting in the overriding plate of two convergent margins. © 2014 Elsevier B.V

    Evidence for Non-additive Influence of Single Nucleotide Polymorphisms within the Apolipoprotein E Gene

    Full text link
    We analyzed 13 single nucleotide polymorphisms (SNPs) within the apolipoprotein E ( APOE ) gene, to identify pairs of SNPs that interact in a non-additive manner to influence genotypic mean levels of the ApoE protein in blood. An overparameterized general linear model of two-SNP genotype means was applied to data from 456 female and 398 male unrelated European Americans from Rochester, MN, USA. We found statistically significant evidence for non-additivity between SNPs within the male sample, but not within the female sample. We observed nine pairs of SNPs with evidence of non-additivity at the Α= 0.05 level of statistical significance within the male sample, when approximately three were expected by chance. Five of the nine pairs involved three SNPs (560, 624 and 1163) that did not have a statistically significant influence when considered separately in a single-site analysis. Three of the nine pairs involving four SNPs (832, 1998, 3937 and 4951) showed significant evidence for non-additivity in at least one of two other male samples from Jackson, MS, USA and North Karelia, Finland. Although all four of these SNPs had a statistically significant influence in Rochester when considered separately, only SNP 3937 gave a significant result in the other male samples. The four SNPs are located in the promoter, intronic and exonic regions, and 3' to the polyadenylation signal in the APOE gene. Our study suggests that analyses that only consider SNPs located in exons and ignore contexts such as those indexed by gender and population, and disregard non-additivity of SNP effects, may inappropriately model the contribution of a gene to the genetic architecture of a trait that has a complex multifactorial etiology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65641/1/j.1529-8817.2003.00112.x.pd
    • 

    corecore