199 research outputs found

    Detection of Leakage Areas in an Earth Embankment from GPR Measurements and Permeability Logging

    Get PDF
    Ground penetrating radar (GPR) is a nondestructive method allowing the improvement of our knowledge of civil engineering structures. In particular, this method may be a nondestructive efficient tool for dike diagnosis and complete classical geotechnical methods. In this paper, we present GPR observations obtained on an earth embankment (crest and sloped paved revetment) in bad condition and located on the lateral canal of the Loire river (Saint Firmin, 80 km South East of Orléans). These measurements are combined with corings, visual inspection, and permeability logging performed with an updated drilling system, the Perméafor. This survey leads (i) to the detection of decompressed zones associated with leakage areas visible at the foot of the downstream slope and (ii) to the location of potentials voids underneath the paved revetment. This multidisciplinary approach complied with the dike inspection methodology proves its efficiency for the assessment of earth embankments

    In Vitro Effects of the Endocrine Disruptor p,p’-DDT on Human Follitropin Receptor

    Get PDF
    BACKGROUND: 1-chloro-4-[2,2,2-trichloro-1-(4-chlorophenyl)ethyl]benzene (p,p\u27-DDT) is a persistent environmental endocrine disruptor (ED). Several studies have shown an association between p,p\u27-DDT exposure and reproductive abnormalities. OBJECTIVES: To investigate the putative effects of p,p\u27-DDT on the human follitropin receptor (FSHR) function. METHODS AND RESULTS: We used Chinese hamster ovary (CHO) cells stably expressing human FSHR to investigate the impact of p,p\u27-DDT on FSHR activity and its interaction with the receptor. At a concentration of 5 μM p,p\u27-DDT increased the maximum response of the FSHR to follitropin by 32 ± 7.45%. However, 5 μM p,p\u27-DDT decreased the basal activity and did not influence the maximal response of the closely related LH/hCG receptor to human chorionic gonadotropin (hCG). The potentiating effect of p,p\u27-DDT was specific for the FSHR. Moreover, in cells that did not express FSHR, p,p\u27-DDT had no effect on cAMP response. Thus, the potentiating effect of p,p\u27-DDT was dependent on the FSHR. In addition, p,p\u27-DDT increased the sensitivity of FSHR to hCG and to a low molecular weight agonist of the FSHR, 3-((5methyl)-2-(4-benzyloxy-phenyl)-5-{[2-[3-ethoxy-4-methoxy-phenyl)-ethylcarbamoyl]-methyl}-4-oxo-thiazolidin-3-yl)-benzamide (16a). Basal activity in response to p,p\u27-DDT and potentiation of the FSHR response to FSH by p,p\u27-DDT varied among FSHR mutants with altered transmembrane domains (TMDs), consistent with an effect of p,p\u27-DDT via TMD binding. This finding was corroborated by the results of simultaneously docking p,p\u27-DDT and 16a into the FSHR transmembrane bundle. CONCLUSION:p,p\u27-DDT acted as a positive allosteric modulator of the FSHR in our experimental model. These findings suggest that G protein-coupled receptors are additional targets of endocrine disruptor

    Ménerval, Saumont-la-Poterie – Le Pont de Coq

    Get PDF
    Dans la perspective de mieux appréhender les franchissements historiques de l’Epte au lieu-dit « Le Pont de Coq » sur les communes de Saumont-la-Poterie et Ménerval, l’Association pour la Sauvegarde du Pont de Coq (ASPC) a réalisé une campagne de sondages archéologiques en juin et octobre 2012. Des études pluridisciplinaires ont été préalablement réalisées montrant l’ancienneté de ce franchissement qui constituait un des seuls passages nord/sud de l’Epte dans le Pays de Bray. La synthèse des ..

    The Huayruro Project: mapping the Calicanto Inca area buried by the A.D. 1600 Huaynaputina eruption, with geophysical imaging and remote sensing

    Get PDF
    We present geophysical and remote sensing observations near the Quinistaquillas town (southern Peru), in the framework of the HUAYRURO Project. This Inca zone was buried during the A.D. 1600 Huaynaputina eruption, the most important volcanic phenomenon of the last 400 years. The eruption had a global impact, due to the volume of emitted ash (2-3 times the one emitted by Vesuvius in A.D. 79). This lead to a 1.13°C cooling of the planet and caused a worlwide agricultural crisis. During the eruption, the Calicanto-Chimpapampa zone was covered by ashes and pyroclastic flows, with a thickness in the range [1 - 20] m. From 2015 to 2017, remote sensing and geophysical methods were deployed to map a ~ 1 km*2 km area, up to 3-m depth

    Physical impacts of the CE 1600 Huaynaputina eruption on the local habitat: Geophysical insights

    Get PDF
    [ESP] El impacto climático global de la erupción del volcán Huaynaputina (IEV6) en 1600 está bien documentado pero las consecuencias regionales sobre las construcciones y los habitantes están poco conocidas. La localización de varios pueblos sepultados bajo los depósitos espesos del Huaynaputina no es claramente mencionada en las crónicas españolas. Investigaciones geofísicas realizadas durante el periodo 2015-2016 sobre diferentes sitios de ruinas a menos de 16 km del cráter constituyen la parte inicial de un proyecto denominado “Huayruro”, cuyo objetivo es entender mejor los impactos físicos y socio-económicos de esta erupción. Varios métodos e instrumentos geofísicos fueron utilizados: un drone y modelos numéricos de terreno de alta resolución, un geo-radar con imágenes 3D del subsuelo, el magnetismo, las imágenes infra-rojas y el electro-magnetismo. Esta investigación geofísica preliminar ha permitido identificar la futura estratégia y la mejor instrumentación para cartografiar el área del antiguo pueblo enterrado de Calicanto, localizando con precisión su extensión y los muros de las habitaciones. Este mapeo servirá para los futuros estudios tefro-estratigráficos y arqueológicos. El objetivo final del proyecto es diseminar los resultados del estudio multidisciplinar al público incluyendo la creación de un museo de sitio

    Principles of Periodontology

    Get PDF
    Periodontal diseases are among the most common diseases affecting humans. Dental biofilm is a contributor to the etiology of most periodontal diseases. It is also widely accepted that immunological and inflammatory responses to biofilm components are manifested by signs and symptoms of periodontal disease. The outcome of such interaction is modulated by risk factors (modifiers), either inherent (genetic) or acquired (environmental), significantly affecting the initiation and progression of different periodontal disease phenotypes. While definitive genetic determinants responsible for either susceptibility or resistance to periodontal disease have yet to be identified, many factors affecting the pathogenesis have been described, including smoking, diabetes, obesity, medications, and nutrition. Currently, periodontal diseases are classified based upon clinical disease traits using radiographs and clinical examination. Advances in genomics, molecular biology, and personalized medicine may result in new guidelines for unambiguous disease definition and diagnosis in the future. Recent studies have implied relationships between periodontal diseases and systemic conditions. Answering critical questions regarding host‐parasite interactions in periodontal diseases may provide new insight in the pathogenesis of other biomedical disorders. Therapeutic efforts have focused on the microbial nature of the infection, as active treatment centers on biofilm disruption by non‐surgical mechanical debridement with antimicrobial and sometimes anti‐inflammatory adjuncts. The surgical treatment aims at gaining access to periodontal lesions and correcting unfavorable gingival/osseous contours to achieve a periodontal architecture that will provide for more effective oral hygiene and periodontal maintenance. In addition, advances in tissue engineering have provided innovative means to regenerate/repair periodontal defects, based upon principles of guided tissue regeneration and utilization of growth factors/biologic mediators. To maintain periodontal stability, these treatments need to be supplemented with long‐term maintenance (supportive periodontal therapy) programs
    corecore