56 research outputs found

    Molecular diagnosis of COVID-19 in Burkina Faso: successful challenge

    Get PDF
    COVID-19 has worsened the health situation in Burkina Faso. In fact, the country has known a peak of the second wave, which began in November, and ended around January 2021. Biological diagnosis has played a key role in the management of COVID-19. The aim of this review paper is to address the practical aspects that laboratories have faced in order to meet the challenge of SARS-CoV-2 diagnosis in Burkina Faso. According to international requirements, Burkina Faso has used real-time Reverse Transcription Polymerase Chain Reaction (rRT-PCR) as the “gold standard” for the diagnosis of COVID-19. From March 9, 2020 to July 31, 2021, in Burkina Faso, laboratories involved in COVID-19 diagnosis analyzed 226,189 samples by molecular tests and 2, 352 samples by rapid antigenic tests, whose peak was in January 2021 with 35,984 samples analyzed. The daily average rate of samples analysis was 456.02 tests. The majority of the individuals requesting COVID-19 tests were travelers (62.00%), followed by contact cases (18.42%), suspected cases (7.95%), voluntary screening (7.57%), and 4.06% of other applicants consisting of health care personnel and at-risk patients. In terms of prevention, vaccines are being administered to the general population. However, some efforts must be made to provide automated sample analysis equipment and complete sequencing of SARS-CoV-2 remains among the challenges

    ARIA 2016 : Care pathways implementing emerging technologies for predictive medicine in rhinitis and asthma across the life cycle

    Get PDF
    The Allergic Rhinitis and its Impact on Asthma (ARIA) initiative commenced during a World Health Organization workshop in 1999. The initial goals were (1) to propose a new allergic rhinitis classification, (2) to promote the concept of multi-morbidity in asthma and rhinitis and (3) to develop guidelines with all stakeholders that could be used globally for all countries and populations. ARIA-disseminated and implemented in over 70 countries globally-is now focusing on the implementation of emerging technologies for individualized and predictive medicine. MASK [MACVIA (Contre les Maladies Chroniques pour un Vieillissement Actif)-ARIA Sentinel NetworK] uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group and by patients themselves. An app (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control and work productivity as well as a clinical decision support system. It is associated with an inter-operable tablet for physicians and other health care professionals. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing. The aim of the novel ARIA approach is to provide an active and healthy life to rhinitis sufferers, whatever their age, sex or socio-economic status, in order to reduce health and social inequalities incurred by the disease.Peer reviewe

    ARIA digital anamorphosis : Digital transformation of health and care in airway diseases from research to practice

    Get PDF
    Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed.Peer reviewe

    Erratum to: Scaling up strategies of the chronic respiratory disease programme of the European Innovation Partnership on Active and Healthy Ageing (Action Plan B3: Area 5)

    Get PDF

    Adherence to treatment in allergic rhinitis using mobile technology. The MASK Study

    Get PDF
    Background: Mobile technology may help to better understand the adherence to treatment. MASK-rhinitis (Mobile Airways Sentinel NetworK for allergic rhinitis) is a patient-centred ICT system. A mobile phone app (the Allergy Diary) central to MASK is available in 22 countries. Objectives: To assess the adherence to treatment in allergic rhinitis patients using the Allergy Diary App. Methods: An observational cross-sectional study was carried out on all users who filled in the Allergy Diary from 1 January 2016 to 1 August 2017. Secondary adherence was assessed by using the modified Medication Possession Ratio (MPR) and the Proportion of days covered (PDC) approach. Results: A total of 12143 users were registered. A total of 6949 users reported at least one VAS data recording. Among them, 1887 users reported >= 7 VAS data. About 1195 subjects were included in the analysis of adherence. One hundred and thirty-six (11.28%) users were adherent (MPR >= 70% and PDC = 70% and PDC = 1.50) and 176 (14.60%) were switchers. On the other hand, 832 (69.05%) users were non-adherent to medications (MPR Conclusion and clinical relevance: Adherence to treatment is low. The relative efficacy of continuous vs on-demand treatment for allergic rhinitis symptoms is still a matter of debate. This study shows an approach for measuring retrospective adherence based on a mobile app. This also represents a novel approach for analysing medication-taking behaviour in a real-world setting.Peer reviewe

    Pantropical variability in tree crown allometry

    Get PDF
    Aim Tree crowns determine light interception, carbon and water exchange. Thus, understanding the factors causing tree crown allometry to vary at the tree and stand level matters greatly for the development of future vegetation modelling and for the calibration of remote sensing products. Nevertheless, we know little about large‐scale variation and determinants in tropical tree crown allometry. In this study, we explored the continental variation in scaling exponents of site‐specific crown allometry and assessed their relationships with environmental and stand‐level variables in the tropics. Location Global tropics. Time period Early 21st century. Major taxa studied Woody plants. Methods Using a dataset of 87,737 trees distributed among 245 forest and savanna sites across the tropics, we fitted site‐specific allometric relationships between crown dimensions (crown depth, diameter and volume) and stem diameter using power‐law models. Stand‐level and environmental drivers of crown allometric relationships were assessed at pantropical and continental scales. Results The scaling exponents of allometric relationships between stem diameter and crown dimensions were higher in savannas than in forests. We identified that continental crown models were better than pantropical crown models and that continental differences in crown allometric relationships were driven by both stand‐level (wood density) and environmental (precipitation, cation exchange capacity and soil texture) variables for both tropical biomes. For a given diameter, forest trees from Asia and savanna trees from Australia had smaller crown dimensions than trees in Africa and America, with crown volumes for some Asian forest trees being smaller than those of trees in African forests. Main conclusions Our results provide new insight into geographical variability, with large continental differences in tropical tree crown allometry that were driven by stand‐level and environmental variables. They have implications for the assessment of ecosystem function and for the monitoring of woody biomass by remote sensing techniques in the global tropics

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    • 

    corecore