282 research outputs found

    Ergodicity-breaking reveals time optimal decision making in humans

    Get PDF
    Ergodicity describes an equivalence between the expectation value and the time average of observables. Applied to human behaviour, ergodic theories of decision-making reveal how individuals should tolerate risk in different environments. To optimise wealth over time, agents should adapt their utility function according to the dynamical setting they face. Linear utility is optimal for additive dynamics, whereas logarithmic utility is optimal for multiplicative dynamics. Whether humans approximate time optimal behavior across different dynamics is unknown. Here we compare the effects of additive versus multiplicative gamble dynamics on risky choice. We show that utility functions are modulated by gamble dynamics in ways not explained by prevailing decision theories. Instead, as predicted by time optimality, risk aversion increases under multiplicative dynamics, distributing close to the values that maximise the time average growth of in-game wealth. We suggest that our findings motivate a need for explicitly grounding theories of decision-making on ergodic considerations

    Deregressed EBV as the response variable yield more reliable genomic predictions than traditional EBV in pure-bred pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genomic selection can be implemented by a multi-step procedure, which requires a response variable and a statistical method. For pure-bred pigs, it was hypothesised that deregressed estimated breeding values (EBV) with the parent average removed as the response variable generate higher reliabilities of genomic breeding values than EBV, and that the normal, thick-tailed and mixture-distribution models yield similar reliabilities.</p> <p>Methods</p> <p>Reliabilities of genomic breeding values were estimated with EBV and deregressed EBV as response variables and under the three statistical methods, genomic BLUP, Bayesian Lasso and MIXTURE. The methods were examined by splitting data into a reference data set of 1375 genotyped animals that were performance tested before October 2008, and 536 genotyped validation animals that were performance tested after October 2008. The traits examined were daily gain and feed conversion ratio.</p> <p>Results</p> <p>Using deregressed EBV as the response variable yielded 18 to 39% higher reliabilities of the genomic breeding values than using EBV as the response variable. For daily gain, the increase in reliability due to deregression was significant and approximately 35%, whereas for feed conversion ratio it ranged between 18 and 39% and was significant only when MIXTURE was used. Genomic BLUP, Bayesian Lasso and MIXTURE had similar reliabilities.</p> <p>Conclusions</p> <p>Deregressed EBV is the preferred response variable, whereas the choice of statistical method is less critical for pure-bred pigs. The increase of 18 to 39% in reliability is worthwhile, since the reliabilities of the genomic breeding values directly affect the returns from genomic selection.</p

    Ion Trap in a Semiconductor Chip

    Get PDF
    The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ion. Work on miniaturizing electromagnetic traps to the micrometer scale promises even higher levels of control and reliability. Compared with 'chip traps' for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass spectrometer arrays, compact atomic clocks, and most notably, large scale quantum information processors. Here we report the operation of a micrometer-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool, and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium arsenide (GaAs) heterostructure.Comment: 4 pages, 4 figure

    How the co-benefits of addressing climate change can motivate action across the world

    Get PDF
    It is traditionally thought that the public must be convinced of the reality and importance of anthropogenic climate change in order to take personal and political action. However, convincing the broad public involves overcoming powerful ideological obstacles1-4, and in many places climate change is slipping in public importance5,6. Here we examined whether beliefs about the “co-benefits” of mitigating climate change7 can avoid these obstacles by motivating behavior in both those who accept climate change and those who are unconvinced or unconcerned. We describe an integrative framework for assessing co-benefits8, distinguishing sociological dimensions (e.g., pollution, disease, economic development), and community character (e.g., benevolence, competence). Data from all inhabited continents (24 countries; N=6059), showed that two types of co-benefits, Development (economic and scientific advancement) and Benevolence (a more moral and caring community), rivalled climate change importance in the strength of their relationships with motivations to act. These co-benefits showed effects independent of climate change importance beliefs, and showed similar effects for both climate change believers and skeptics. Communicating these co-benefits of addressing climate change can help motivate action on climate change where traditional approaches have stalled

    Mannose-Binding Lectin 2 Polymorphisms Do Not Influence Frequency or Type of Infection in Adults with Chemotherapy Induced Neutropaenia

    Get PDF
    BACKGROUND: Mannose-binding Lectin protein (MBL) has been suggested to be relevant in the defence against infections in immunosuppressed individuals. In a Swedish adult cohort immunosuppressed from both the underlying disease and from iatrogenic treatments for their underlying disease we investigated the role of MBL in susceptibility to infection. METHODS: In this cross sectional, prospective study, blood samples obtained from 96 neutropaenic febrile episodes, representing 82 individuals were analysed for single nucleotide polymorphism (SNP) in the MBL2 gene. Concurrent measurement of plasma MBL protein concentrations was also performed for observation of acute response during febrile episodes. FINDINGS: No association was observed between MBL2 genotype or plasma MBL concentrations, and the type or frequency of infection. Adding to the literature, we found no evidence that viral infections or co-infections with virus and bacteria would be predisposed by MBL deficiency. We further saw no correlation between MBL2 genotype and the risk of fever. However, fever duration in febrile neutropaenic episodes was negatively associated with MBL2 SNP mutations (p<0.05). Patients with MBL2 SNP mutations presented a median febrile duration of 1.8 days compared with 3 days amongst patients with wildtype MBL2 genotype. INTERPRETATION: We found no clear association between infection, or infection type to MBL2 genotypes or plasma MBL concentration, and add to the reports casting doubts on the benefit of recombinant MBL replacement therapy use during iatrogenic neutropaenia

    HLA-DRB1-DQB1 Haplotypes Confer Susceptibility and Resistance to Multiple Sclerosis in Sardinia

    Get PDF
    Introduction: Genetic predisposition to multiple sclerosis (MS) in Sardinia (Italy) has been associated with five DRB1*-DQB1* haplotypes of the human leukocyte antigen (HLA). Given the complexity of these associations, an in-depth re-analysis was performed with the specific aims of confirming the haplotype associations; establishing the independence of the associated haplotypes; and assessing patients ’ genotypic risk of developing MS. Methods and Results: A transmission disequilibrium test (TDT) of the DRB1*-DQB1 * haplotypes in 943 trio families

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio

    Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector

    Get PDF
    A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level

    Search for the direct production of charginos and neutralinos in final states with tau leptons in √s=13 TeV collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with at least two hadronically decaying tau leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of 36.1 fb−1, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13TeV.Nosignificant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of ˜χ+1 ˜χ−1 pair production and of ˜χ±1 ˜χ02 and ˜χ+1 ˜χ−1 production in simplified models where the neutralinos and charginos decay solely via intermediate left-handed staus and tau sneutrinos, and the mass of the ˜ τL state is set to be halfway between the masses of the ˜χ±1 and the ˜χ01. Chargino masses up to 630 GeV are excluded at 95% confidence level in the scenario of direct production of ˜χ+1 ˜χ−1 for a massless ˜χ01. Common ˜χ±1 and ˜χ02 masses up to 760 GeV are excluded in the case of production of ˜χ±1 ˜χ02 and ˜χ+1 ˜χ−1 assuming a massless ˜χ01. Exclusion limits for additional benchmark scenarios with large and small mass-splitting between the ˜χ±1 and the ˜χ01 are also studied by varying the ˜ τL mass between the masses of the ˜χ±1 and the ˜χ01
    corecore