700 research outputs found
Preparation of Insoluble Hole-Injection Layers by Cationic Ring-Opening Polymerisation of Oxetane-Derivatized TriPhenylamineDimer for Organic Electronics Devices
AbstractWe have demostrated that oxetane-derivatized hole conductors as well as electroluminescent polymers can be crosslinked via cationic ring-opening polymerisation (CROP) without deterioration of their electrical and electro–optical properties. This allows the fabrication of electronic multilayer devices via solution process. Here, we demonstrate three kinds of CROP crosslinking methods. They are (1) oxidative crosslinking, (2) photo crosslinking, and (3) trityl crosslinking. The crosslinking process parameters as well as the fluorescence characteristics and the solvent resistance of the resulting films have been investigated. The result shows that the oxidative crosslinking (1) gives the possibility to obtain the doping effect which increases the conductivity of the insoluble layer, although it reduces the fluorescence characteristics. The photo crosslinking (2) is controlled by irradiation; therefore, it gives the possibility to pixelate or pattern the film (lithography). It shows less fluorescence quenching than in (1). The trityl crosslinking (3) is suitable for the devices which are not pixelated and do not need the doping effect. Irradiation is not applicable here. Finally, we applied the insoluble layers in hole-only devices and blue-emitting OLEDs. We found that introduction of the layers improves the efficiency of the OLEDs
Dimensionless cosmology
Although it is well known that any consideration of the variations of
fundamental constants should be restricted to their dimensionless combinations,
the literature on variations of the gravitational constant is entirely
dimensionful. To illustrate applications of this to cosmology, we explicitly
give a dimensionless version of the parameters of the standard cosmological
model, and describe the physics of Big Bang Neucleosynthesis and recombination
in a dimensionless manner. The issue that appears to have been missed in many
studies is that in cosmology the strength of gravity is bound up in the
cosmological equations, and the epoch at which we live is a crucial part of the
model. We argue that it is useful to consider the hypothetical situation of
communicating with another civilization (with entirely different units),
comparing only dimensionless constants, in order to decide if we live in a
Universe governed by precisely the same physical laws. In this thought
experiment, we would also have to compare epochs, which can be defined by
giving the value of any {\it one} of the evolving cosmological parameters. By
setting things up carefully in this way one can avoid inconsistent results when
considering variable constants, caused by effectively fixing more than one
parameter today. We show examples of this effect by considering microwave
background anisotropies, being careful to maintain dimensionlessness
throughout. We present Fisher matrix calculations to estimate how well the fine
structure constants for electromagnetism and gravity can be determined with
future microwave background experiments. We highlight how one can be misled by
simply adding to the usual cosmological parameter set
Corner and sloped culvert baffles improve the upstream passage of adult European eels (Anguilla anguilla)
Installation of baffles intended to improve fish passage through culverts can reduce discharge capacity and trap debris, increasing flood risk. A sloping upstream face may reduce this risk, but new designs must be tested for fish passage efficiency. The European eel (Anguilla anguilla) is a critically endangered species, yet the suitability of even common baffle types to aid upstream movement has not been tested. This study compared the water depth, velocity, turbulent kinetic energy (TKE), and upstream passage performance of adult yellow-phase eels, between three 6 m long culvert models: smooth and unmodified (control); containing corner baffles (treatment 1); and with prototype sloped baffles installed (treatment 2). Passage of individual fish was assessed during 25 one-hour trials per model. Performance was quantified as entrance efficiency, number of entries per fish, passage efficiency, and overall efficiency. Total and passage delay, and successful passage time were also evaluated. Despite some individuals being able to swim against unexpectedly high water velocities (>1.5 m s?1 for 4 m), passage performance in the control was poor, with an overall efficiency of 28%. Compared to the control, both treatments increased the mean centreline water depth by approximately 0.11 m, created heterogeneous flow conditions with low velocity resting areas, and reduced maximum velocities. As a result, entrance rate and all efficiency parameters were higher for the treatments than for the control (overall efficiency = 84%), despite longer passage delay. The TKE was slightly higher in treatment 2 than 1, but there was no difference in water depth or overall efficiency. The findings show that both corner and sloped baffles can mitigate for impeded upstream adult eel movement. The extent to which the sloping upstream face will improve debris transport should be explored further
Measurement of Lepton Momentum Moments in the Decay bar{B} \to X \ell \bar{\nu} and Determination of Heavy Quark Expansion Parameters and |V_cb|
We measure the primary lepton momentum spectrum in B-bar to X l nu decays,
for p_l > 1.5 GeV/c in the B rest frame. From this, we calculate various
moments of the spectrum. In particular, we find R_0 = [int(E_l>1.7)
(dGam/dE_sl)*dE_l] / [int(E_l>1.5) (dGam/dE_sl)*dE_l] = 0.6187 +/- 0.0014_stat
+/- 0.0016_sys and R_1 = [int(E_l>1.5) E_l(dGam/dE_sl)*dE_l] / [int(E_l>1.5)
(dGam/dE_sl)*dE_l] = (1.7810 +/- 0.0007_stat +/- 0.0009_sys) GeV. We use these
moments to determine non-perturbative parameters governing the semileptonic
width. In particular, we extract the Heavy Quark Expansion parameters
Lambda-bar = (0.39 +/- 0.03_stat +/- 0.06_sys +/- 0.12_th) GeV and lambda_1 =
(-0.25 +/- 0.02_stat +/- 0.05_sys +/- 0.14_th) GeV^2. The theoretical
constraints used are evaluated through order 1/M_B^3 in the non-perturbative
expansion and beta_0*alpha__s^2 in the perturbative expansion. We use these
parameters to extract |V_cb| from the world average of the semileptonic width
and find |V_cb| = (40.8 +/- 0.5_Gam-sl +/- 0.4_(lambda_1,Lambda-bar)-exp +/-
0.9_th) x 10^-3. In addition, we extract the short range b-quark mass m_b^1S =
(4.82 +/- 0.07_exp +/- 0.11_th) GeV/c^2. Finally, we discuss the implications
of our measurements for the theoretical understanding of inclusive semileptonic
processes.Comment: 21 pages postscript, also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to PR
Genuine Correlations of Like-Sign Particles in Hadronic Z0 Decays
Correlations among hadrons with the same electric charge produced in Z0
decays are studied using the high statistics data collected from 1991 through
1995 with the OPAL detector at LEP. Normalized factorial cumulants up to fourth
order are used to measure genuine particle correlations as a function of the
size of phase space domains in rapidity, azimuthal angle and transverse
momentum. Both all-charge and like-sign particle combinations show strong
positive genuine correlations. One-dimensional cumulants initially increase
rapidly with decreasing size of the phase space cells but saturate quickly. In
contrast, cumulants in two- and three-dimensional domains continue to increase.
The strong rise of the cumulants for all-charge multiplets is increasingly
driven by that of like-sign multiplets. This points to the likely influence of
Bose-Einstein correlations. Some of the recently proposed algorithms to
simulate Bose-Einstein effects, implemented in the Monte Carlo model PYTHIA,
are found to reproduce reasonably well the measured second- and higher-order
correlations between particles with the same charge as well as those in
all-charge particle multiplets.Comment: 26 pages, 6 figures, Submitted to Phys. Lett.
Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions
We review the most important experimental results from the first three years
of nucleus-nucleus collision studies at RHIC, with emphasis on results from the
STAR experiment, and we assess their interpretation and comparison to theory.
The theory-experiment comparison suggests that central Au+Au collisions at RHIC
produce dense, rapidly thermalizing matter characterized by: (1) initial energy
densities above the critical values predicted by lattice QCD for establishment
of a Quark-Gluon Plasma (QGP); (2) nearly ideal fluid flow, marked by
constituent interactions of very short mean free path, established most
probably at a stage preceding hadron formation; and (3) opacity to jets. Many
of the observations are consistent with models incorporating QGP formation in
the early collision stages, and have not found ready explanation in a hadronic
framework. However, the measurements themselves do not yet establish
unequivocal evidence for a transition to this new form of matter. The
theoretical treatment of the collision evolution, despite impressive successes,
invokes a suite of distinct models, degrees of freedom and assumptions of as
yet unknown quantitative consequence. We pose a set of important open
questions, and suggest additional measurements, at least some of which should
be addressed in order to establish a compelling basis to conclude definitively
that thermalized, deconfined quark-gluon matter has been produced at RHIC.Comment: 101 pages, 37 figures; revised version to Nucl. Phys.
ZC4H2, an XLID gene, is required for the generation of a specific subset of CNS interneurons
Miles-Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID resequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specificmarkers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injectedwith human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity ofmany brain and spinal circuits
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS
We present the results of a search for new, heavy particles that decay at a
significant distance from their production point into a final state containing
charged hadrons in association with a high-momentum muon. The search is
conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV
and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS
detector operating at the Large Hadron Collider. Production of such particles
is expected in various scenarios of physics beyond the standard model. We
observe no signal and place limits on the production cross-section of
supersymmetric particles in an R-parity-violating scenario as a function of the
neutralino lifetime. Limits are presented for different squark and neutralino
masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final
version to appear in Physics Letters
- …