2,033 research outputs found

    Electroproduction of hadrons on nuclei at GeV energies

    Full text link
    We investigate coherence length effects and hadron attenuation in lepton scattering off nuclei in the kinematic regime of the HERMES experiment. The elementary electron-nucleon interaction is described within the event generator PYTHIA while a full coupled-channel treatment of the final state interactions is included by means of a BUU transport model. The results of our calculations are in good agreement with the experimentally measured transparency ratio of incoherent rho0 electroproduction off Nitrogen and the multiplicity ratio R_M^h for charged hadrons, pions, kaons, protons and anti-protons in deep inelastic scattering off Nitrogen and Krypton targets.Comment: 17 pages, 4 figures. Proceedings of 2nd Int. Conf. on Nuclear and Particle Physics with CEBAF at Jefferson Lab, Dubrovnik, 26-31 May 2003, to be published in Fizika

    Phonons, electronic charge response and electron-phonon interaction in the high-temperature superconductors

    Full text link
    We investigate in the framework of linear response theory the complete phonon dispersion, phonon induced electronic charge response, electron-phonon interaction and dielectric and infrared properties of the high-temperature superconductors (HTSC's). In particular the experimentally observed strong renormalization of the in-plane oxygen bond-stretching modes (OBSM) which appear upon doping in the HTSC's is discussed. It is shown that the characteristic softening, indicating a strong EPI, is most likely a generic effect of the CuO plane and is driven by a nonlocal coupling of the displaced ions to the localized charge-fluctuations (CF's) at the Cu and O ions. The different behaviour of the OBSM during the insulator-metal transition via the underdoped phase is calculated and from a comparison of these modes conclusions about the electronic state in the HTSC's are drawn. The underdoped state is modelled in terms of a charge response which is insulator-like at the Cu and is competing with a metallic charge response at the O-network in the CuO plane. For the non-cuprate HTSC Ba-Bi-O also a strong renormalization of the OBSM is predicted. C-axis polarized infrared and Raman-active modes of the HTSC's are calculated in terms of CF's and anisotropic dipole-fluctuations and the problem of a metallic character of the BiO planes is studied.Interlayer phonons and their accompanying charge response are investigated. Depending on the interlayer coupling calculations are performed from the static, adiabatic- to the non-adiabatic regime.It is shown that phonon-plasmon mixing and a strong long-ranged non-adiabatic EPI becomes evident within a certain region around the c-axis. Both the OBSM and the non-adiabatic coupled c-axis phonon-plasmon modes are found to be important for pairing in the HTSC's.Comment: 65 pages,20 figures. Extended version to appear in Physica Status Solidi (b) 2004; figure 20 has been corrected; references have been adde

    Nonlocal electron-phonon interaction as a source of dynamic charge stripes in the cuprates

    Full text link
    We calculate for La2CuO4 the phonon-induced redistribution of the electronic charge density in the insulating, the underdoped pseudogap and the more conventional metallic state as obtained for optimal and overdoping, respectively. The investigation is performed for the anomalous high-frequency-oxygen-bond stretching modes (OBSM) which experimentally are known to display a strong softening of the frequencies upon doping in the cuprates. This most likely generic anomalous behaviour of the OBSM has been shown to be due to a strong nonlocal electron-phonon interaction (EPI) mediated by charge fluctuations on the ions. The modeling of the competing electronic states of the cuprates is achieved in terms of consecutive orbital selective incompressibility-compressibility transitions for the charge response. We demonstrate that the softening of the OBSM in these states is due to nonlocally induced dynamic charge inhomogenities in form of charge stripes along the CuO bonds with different orbital character. Thus, a multi-orbital approach is essential for the CuO plane. The dynamic charge inhomogeneities may in turn be considered as precursors of static charge stripe order as recently observed in La2x_{2-x}Bax_{x}CuO4_{4} in a broad range of doping around x=1/8. The latter may trigger a reconstruction of the Fermi surface into small pockets with reduced doping. We argue that the incompressibility of the Cu3d orbital and simultaneously the compressibility of the O2p orbital in the pseudogap state seems to be required to nucleate dynamic stripes.Comment: 10 pages, 4 figures, to be published in "Advances in Condensed Matter Physics

    Modeling of the electronic state of the High-Temperature Superconductor LaCuO: Phonon dynamics and charge response

    Full text link
    A modeling of the normal state of the p-doped high-temperature superconductors (HTSC's) is presented. This is achieved starting from a more conventional metallic phase for optimal- and overdoping and passing via the underdoped to the insulating state by consecutive orbital selective compressibility-incompressibility transitions in terms of sum rules for the charge response. The modeling is substantiated by corresponding phonon calculations. Extending investigations of the full dispersion and in particular of the strongly doping dependent anomalous phonon modes in LaCuO, which so far underpin our treatment of the density response of the electrons in the p-doped HTSC's, gives additional support for the modeling of the electronic state, compares well with recent experimental data and predicts the dispersion for the overdoped regime. Moreover, phonon densities of states have been calculated and compared for the insulating, underdoped, optimally doped and overdoped state of LaCuO. From our modeling of the normal state a consistent picture of the superconducting phase also can be extracted qualitatively pointing in the underdoped regime to a phase ordering transition. On the other hand, the modeling of the optimal and overdoped state is consistent with a quasi-particle picture with a well defined Fermi surface. Thus, in the latter case a Fermi surface instability with an evolution of pairs of well defined quasiparticles is possible and can lead to a BCS-type ordering. So, it is tempting to speculate that optimal TCT_C in the HTSC's marks a crossover region between these two forms of ordering.Comment: 18 RevTex pages, 10 figures, revised version, references updated, accepted for publication in Physical Review

    Space-Time Picture of Fragmentation in PYTHIA/JETSET for HERMES and RHIC

    Full text link
    We examine the space-time evolution of (pre-)hadron production within the Lund string fragmentation model. The complete four-dimensional information of the string breaking vertices and the meeting points of the prehadron constituents are extracted for each single event in Monte Carlo simulations using the Jetset-part of Pythia. We discuss the implication on the deep inelastic lepton scattering experiments at HERMES as well as on observables in ultra-relativistic heavy ion collisions at RHIC, using Pythia also for modeling the hard part of the interaction.Comment: 15 pages, 7 figures, final version as accepted by Phys Lett

    In-Medium Properties of Hadrons - Observables II

    Full text link
    In this review we discuss the observable consequences of in-medium changes of hadronic properties in reactions with elementary probes, and in particular photons, on nuclei. After an outline of the theoretical method used we focus on a discussion of actual observables in photonuclear reactions; we discuss in detail 2π2\pi- and vector-meson production. We show that the 2π02\pi^0 photoproduction data can be well described by final state interactions of the pions produced whereas the semi-charged π0π±\pi^0\pi^\pm channel exhibits a major discrepancy with theory. For ω\omega production on nuclei in the TAPS/CB@ELSA experiment we analyse the π0γ\pi^0\gamma decay channel, and illustrate the strength of the method by simulating experimental acceptance problems. Completely free of final state interactions is dilepton production in the few GeV range. We show that the sensitivity of this decay channel to changes of hadronic properties in medium in photonuclear reactions on nuclei is as large as in ultrarelativistic heavy ion collisions and make predictions for the on-going G7 experiment at JLAB. Finally we discuss that hadron production in nuclei at 10 -- 20 GeV photon energies can give important information on the hadronization process, and in particular on the time-scales involved. We show here detailed calculations for the low-energy (12 GeV) run at HERMES and predictions for planned experiments at JLAB.Comment: Invited Talk by U. Mosel, Proceedings of the Int. School on Nuclear Physics, 26th Course, "Lepton scattering and the structure of hadrons and nuclei", Erice (Sicily), September 16th-24th, 2004, short piece of text adde

    Nuclear shadowing and in-medium properties of the rho^0

    Get PDF
    We explain the early onset of shadowing in nuclear photoabsorption within a multiple scattering approach and discuss its relation to in-medium modifications of the rho^0.Comment: 4 pages, 2 figures, to appear in the proceedings of the 9th International Conference on the Structure of Baryons, Newport News, VA, USA, 3-8 Mar 200
    corecore