587 research outputs found

    The association of the vanin-1 N131S variant with blood pressure is mediated by endoplasmic reticulum-associated degradation and loss of function

    Get PDF
    High blood pressure (BP) is the most common cardiovascular risk factor worldwide and a major contributor to heart disease and stroke. We previously discovered a BP-associated missense SNP (single nucleotide polymorphism)-rs2272996-in the gene encoding vanin-1, a glycosylphosphatidylinositol (GPI)-anchored membrane pantetheinase. In the present study, we first replicated the association of rs2272996 and BP traits with a total sample size of nearly 30,000 individuals from the Continental Origins and Genetic Epidemiology Network (COGENT) of African Americans (P=0.01). This association was further validated using patient plasma samples; we observed that the N131S mutation is associated with significantly lower plasma vanin-1 protein levels. We observed that the N131S vanin-1 is subjected to rapid endoplasmic reticulum-associated degradation (ERAD) as the underlying mechanism for its reduction. Using HEK293 cells stably expressing vanin-1 variants, we showed that N131S vanin-1 was degraded significantly faster than wild type (WT) vanin-1. Consequently, there were only minimal quantities of variant vanin-1 present on the plasma membrane and greatly reduced pantetheinase activity. Application of MG-132, a proteasome inhibitor, resulted in accumulation of ubiquitinated variant protein. A further experiment demonstrated that atenolol and diltiazem, two current drugs for treating hypertension, reduce the vanin-1 protein level. Our study provides strong biological evidence for the association of the identified SNP with BP and suggests that vanin-1 misfolding and degradation are the underlying molecular mechanism

    Serum N-glycome biomarker for monitoring development of DENA-induced hepatocellular carcinoma in rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a demand for serum markers for the routine assessment of the progression of liver cancer. We previously found that serum N-linked sugar chains are altered in hepatocellular carcinoma (HCC). Here, we studied glycomic alterations during development of HCC in a rat model.</p> <p>Results</p> <p>Rat HCC was induced by the hepatocarcinogen, diethylnitrosamine (DENA). N-glycans were profiled using the DSA-FACE technique developed in our laboratory.</p> <p>In comparison with control rats, DENA rats showed a gradual but significant increase in two glycans (R5a and R5b) in serum total N-glycans during progression of liver cirrhosis and cancer, and a decrease in a biantennary glycan (P5). The log of the ratio of R5a to P1 (NGA2F) and R5b to P1 [log(R5a/P1) and log(R5b/P1)] were significantly (p < 0.0001) elevated in HCC rats, but not in rats with cirrhosis or fibrosis or in control rats. We thus propose a GlycoTest model using the above-mentioned serum glycan markers to monitor the progression of cirrhosis and HCC in the DENA-treated rat model. When DENA-treated rats were subsequently treated with farnesylthiosalicyclic acid, an anticancer drug, progression to HCC was prevented and GlycoTest markers (P5, R5a and R5b) reverted towards non-DENA levels, and the HCC-specific markers, log(R5a/P1) and log(R5b/P1), normalized completely. <b>Conclusions</b>: We found an increase in core-Îą-1,6-fucosylated glycoproteins in serum and liver of rats with HCC, which demonstrates that fucosylation is altered during progression of HCC. Our GlycoTest model can be used to monitor progression of HCC and to follow up treatment of liver tumors in the DENA rat. This GlycoTest model is particularly important because a rapid non-invasive diagnostic procedure for tumour progression in this rat model would greatly facilitate the search for anticancer drugs.</p

    Downregulation of Fat Mass and Obesity Associated (FTO) Promotes the Progression of Intrahepatic Cholangiocarcinoma

    Get PDF
    Intrahepatic cholangiocarcinoma (ICC) ranks as the second most malignant type of primary liver cancer with a high degree of incidence and a very poor prognosis. Fat mass and obesity-associated protein (FTO) functions as an eraser of the RNA m6A modification, but its roles in ICC tumorigenesis and development remain unknown. We showed here that the protein level of FTO was downregulated in clinical ICC samples and cell lines and that FTO expression was inversely correlated with the expression of CA19-9 and micro-vessel density (MVD). A Kaplan-Meier survival analysis showed that a low expression of FTO predicted poor prognosis in ICC. in vitro, decreased endogenous expression of FTO obviously reduced apoptosis of ICC cells. Moreover, FTO suppressed the anchorage-independent growth and mobility of ICC cells. Through mining the database, FTO was found to regulate the integrin signaling pathway, inflammation signaling pathway, epidermal growth factor receptor (EGFR) signaling pathway, angiogenesis, and the pyrimidine metabolism pathway. RNA decay assay showed that oncogene TEAD2 mRNA stability was impaired by FTO. In addition, the overexpression of FTO suppressed tumor growth in vivo. In conclusion, our study demonstrated the critical roles of FTO in ICC

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-ÎşB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes

    Overexpression of ZEB2 in Peritumoral Liver Tissue Correlates with Favorable Survival after Curative Resection of Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: ZEB2 has been suggested to mediate EMT and disease aggressiveness in several types of human cancers. However, the expression patterns of ZEB2 in hepatocellular carcinoma (HCC) and its effect on prognosis of HCC patients treated with hepatectomy are unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the methods of tissue microarray and immunohistochemistry (IHC) were utilized to investigate ZEB2 expression in HCC and peritumoral liver tissue (PLT). Receiver operating characteristic (ROC), spearman's rank correlation, Kaplan-Meier plots and Cox proportional hazards regression model were used to analyze the data. Up-regulated expression of cytoplasmic/nuclear ZEB2 protein was observed in the majority of PLTs, when compared to HCCs. Further analysis showed that overexpression of cytoplasmic ZEB2 in HCCs was inversely correlated with AFP level, tumor size and differentiation (P<0.05). Also, overexpression of cytoplasmic ZEB2 in PLTs correlated with lower AFP level (P<0.05). In univariate survival analysis, a significant association between overexpression of cytoplasmic ZEB2 by HCCs/PLTs and longer patients' survival was found (P<0.05). Importantly, cytoplasmic ZEB2 expression in PLTs was evaluated as an independent prognostic factor in multivariate analysis (P<0.05). Consequently, a new clinicopathologic prognostic model with cytoplasmic ZEB2 expression (including HCCs and PLTs) was constructed. The model could significantly stratify risk (low, intermediate and high) for overall survival (P = 0.002). CONCLUSIONS/SIGNIFICANCE: Our findings provide a basis for the concept that cytoplasmic ZEB2 expressed by PLTs can predict the postoperative survival of patients with HCC. The combined cytoplasmic ZEB2 prognostic model may become a useful tool for identifying patients with different clinical outcomes

    Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV

    Get PDF
    The performance of muon reconstruction, identification, and triggering in CMS has been studied using 40 inverse picobarns of data collected in pp collisions at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection criteria covering a wide range of physics analysis needs have been examined. For all considered selections, the efficiency to reconstruct and identify a muon with a transverse momentum pT larger than a few GeV is above 95% over the whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4, while the probability to misidentify a hadron as a muon is well below 1%. The efficiency to trigger on single muons with pT above a few GeV is higher than 90% over the full eta range, and typically substantially better. The overall momentum scale is measured to a precision of 0.2% with muons from Z decays. The transverse momentum resolution varies from 1% to 6% depending on pseudorapidity for muons with pT below 100 GeV and, using cosmic rays, it is shown to be better than 10% in the central region up to pT = 1 TeV. Observed distributions of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
    • …
    corecore