13 research outputs found

    The 'COmorBidity in Relation to AIDS' (COBRA) cohort: Design, methods and participant characteristics

    Get PDF
    BACKGROUND: Persons living with HIV on combination antiretroviral therapy (cART) may be at increased risk of the development of age-associated non-communicable comorbidities (AANCC) at relatively young age. It has therefore been hypothesised that such individuals, despite effective cART, may be prone to accelerated aging. OBJECTIVE: The COmorBidity in Relation to AIDS (COBRA) cohort study was designed to investigate the potential causal link between HIV and AANCC, amongst others, in a cohort of middle-aged individuals with HIV with sustained viral suppression on cART and otherwise comparable HIV-negative controls. METHODS: Longitudinal cohort study of HIV-positive subjects ≥45 years of age, with sustained HIV suppression on cART recruited from two large European HIV treatment centres and similarly-aged HIV-negative controls recruited from sexual health centres and targeted community groups. Both HIV-positive and HIV-negative subjects were assessed at study entry and again at follow-up after 2 years. RESULTS: Of the 134 HIV-positive individuals with a median (IQR) age of 56 (51, 62) years recruited, 93% were male, 88% of white ethnicity and 86% were men who have sex with men (MSM). Similarly, the 79 HIV-negative subjects had a median (IQR) age of 57 (52, 64) and 92% were male, 97% of white ethnicity and 80% were MSM. CONCLUSIONS: The results from the COBRA study will be a significant resource to understand the link between HIV and AANCC and the pathogenic mechanisms underlying this link. COBRA will inform future development of novel prognostic tools for earlier diagnosis of AANCC and of novel interventions which, as an adjunct to cART, may prevent AANCC

    Validation of a Novel Multivariate Method of Defining HIV-Associated Cognitive Impairment

    Get PDF
    Background: The optimum method of defining cognitive impairment in virally suppressed people living with HIV is unknown. We evaluated the relationships between cognitive impairment, including using a novel multivariate method (NMM), patient- reported outcome measures (PROMs), and neuroimaging markers of brain structure across 3 cohorts. // Methods: Differences in the prevalence of cognitive impairment, PROMs, and neuroimaging data from the COBRA, CHARTER, and POPPY cohorts (total n = 908) were determined between HIV-positive participants with and without cognitive impairment defined using the HIV-associated neurocognitive disorders (HAND), global deficit score (GDS), and NMM criteria. // Results: The prevalence of cognitive impairment varied by up to 27% between methods used to define impairment (eg, 48% for HAND vs 21% for NMM in the CHARTER study). Associations between objective cognitive impairment and subjective cognitive complaints generally were weak. Physical and mental health summary scores (SF-36) were lowest for NMM-defined impairment (P <.05).There were no differences in brain volumes or cortical thickness between participants with and without cognitive impairment defined using the HAND and GDS measures. In contrast, those identified with cognitive impairment by the NMM had reduced mean cortical thickness in both hemispheres (P <.05), as well as smaller brain volumes (P <.01). The associations with measures of white matter microstructure and brain-predicted age generally were weaker. // Conclusion: Different methods of defining cognitive impairment identify different people with varying symptomatology and measures of brain injury. Overall, NMM-defined impairment was associated with most neuroimaging abnormalities and poorer self-reported health status. This may be due to the statistical advantage of using a multivariate approach

    No evidence for accelerated ageing-related brain pathology in treated HIV: longitudinal neuroimaging results from the Comorbidity in Relation to AIDS (COBRA) project

    Get PDF
    Background: Despite successful antiretroviral therapy people living with HIV (PLWH) experience higher rates of age-related morbidity, including abnormal brain structure, brain function and cognitive impairment. This has raised concerns that PLWH may experience accelerated ageing-related brain pathology. Methods: We performed a multi-centre longitudinal study of 134 virologically-suppressed PLWH (median age = 56.0 years) and 79 demographically-similar HIV-negative controls (median age = 57.2 years). To measure cognitive performance and brain pathology, we conducted detailed neuropsychological assessments and multi-modality neuroimaging (T1-weighted, T2-weighted, diffusion-MRI, resting-state functional-MRI, spectroscopy, arterial spin labelling) at baseline and after two-year follow-up. Group differences in rates of change were assessed using linear mixed effects models. Results: 123 PLWH and 78 HIV-negative controls completed longitudinal assessments (median interval = 1.97 years). There were no differences between PLWH and HIV-negative controls in age, sex, years of education, smoking, alcohol use, recreational drug use, blood pressure, body-mass index or cholesterol levels. At baseline, PLWH had poorer global cognitive performance (P0.1). Cognitive performance was stable across the study period in both groups. Conclusions: Our finding indicate that when receiving successful treatment, middle-aged PLWH are not at increased risk of accelerated ageing-related brain changes or cognitive decline over two years, when compared to closely-matched HIV-negative controls

    Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)

    Get PDF
    This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams. </p

    No evidence for accelerated ageing-related brain pathology in treated HIV: longitudinal neuroimaging results from the Comorbidity in Relation to AIDS (COBRA) project.

    No full text
    Background Despite successful antiretroviral therapy, people living with human immunodeficiency virus (PLWH) experience higher rates of age-related morbidity, including abnormal brain structure, brain function, and cognitive impairment. This has raised concerns that PLWH may experience accelerated aging-related brain pathology. Methods We performed a multicenter longitudinal study of 134 virologically suppressed PLWH (median age, 56.0 years) and 79 demographically similar human immunodeficiency virus (HIV)–negative controls (median age, 57.2 years). To measure cognitive performance and brain pathology, we conducted detailed neuropsychological assessments and multimodality neuroimaging (T1-weighted, T2-weighted, diffusion magnetic resonance imaging [MRI], resting-state functional MRI, spectroscopy, arterial spin labeling) at baseline and at 2 years. Group differences in rates of change were assessed using linear mixed effects models. Results One hundred twenty-three PLWH and 78 HIV-negative controls completed longitudinal assessments (median interval, 1.97 years). There were no differences between PLWH and HIV-negative controls in age, sex, years of education, smoking or alcohol use. At baseline, PLWH had poorer global cognitive performance (P .1). Cognitive performance was longitudinally stable in both groups. Conclusions We found no evidence that middle-aged PLWH, when receiving successful treatment, are at increased risk of accelerated aging-related brain changes or cognitive decline over 2 years

    Structural brain abnormalities in successfully treated HIV infection: Associations with disease and cerebrospinal fluid biomarkers

    No full text
    Background Brain structural abnormalities have been reported in persons living with human immunodeficiency virus (HIV; PLWH) who are receiving suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. Methods We investigated factors associated with brain tissue volumes and white matter microstructure (fractional anisotropy) in 134 PLWH receiving suppressive cART and 79 comparable HIV-negative controls, aged ≥45 years, from the Comorbidity in Relation to AIDS cohort, using multimodal neuroimaging and cerebrospinal fluid biomarkers. Results Compared with controls, PLWH had lower gray matter volumes (−13.7 mL; 95% confidence interval, −25.1 to −2.2) and fractional anisotropy (−0.0073; 95% confidence interval, −.012 to −.0024), with the largest differences observed in those with prior clinical AIDS. Hypertension and the soluble CD14 concentration in cerebrospinal fluid were associated with lower fractional anisotropy. These associations were independent of HIV serostatus (Pinteraction = .32 and Pinteraction = .59, respectively) and did not explain the greater abnormalities in brain structure in relation to HIV infection. Conclusions The presence of lower gray matter volumes and more white matter microstructural abnormalities in well-treated PLWH partly reflect a combination of historical effects of AIDS, as well as the more general influence of systemic factors, such as hypertension and ongoing neuroinflammation. Additional mechanisms explaining the accentuation of brain structure abnormalities in treated HIV infection remain to be identified

    Structural brain abnormalities in successfully treated HIV infection: associations with disease and cerebrospinal fluid biomarkers.

    No full text
    Background: Brain structural abnormalities have been reported in persons with HIV (PWH) on suppressive combination antiretroviral therapy (cART), but their pathophysiology remains unclear. Methods: We investigated factors associated with brain tissue volumes and white matter microstructure (fractional anisotropy) in 134 PWH on suppressive cART and 79 comparable HIV-negative controls, aged ≥45 years from the Co-morBidity in Relation to AIDS (COBRA) cohort, using multimodal neuroimaging and cerebrospinal fluid (CSF) biomarkers. Results: Compared to controls, PWH had lower grey matter volumes (-13.7 mL [95%-confidence interval -25.1, -2.2 mL]) and fractional anisotropy (-0.0073 [-0.012, -0.0024]), with the largest differences observed in those with prior clinical AIDS. Hypertension and CSF soluble CD14 concentration were associated with lower fractional anisotropy. These associations were independent of HIV serostatus (Pinteraction=0.32 and Pinteraction=0.59, respectively) and did not explain the greater abnormalities in brain structure in relation to HIV. Conclusions: The presence of lower grey matter volumes and more white matter microstructural abnormalities in well-treated PWH partly reflect a combination of historical effects of AIDS, as well as the more general influence of systemic factors such as hypertension and ongoing neuroinflammation. Additional mechanisms explaining the accentuation of brain structure abnormalities in treated HIV infection remain to be identified
    corecore