3,656 research outputs found

    Antimicrobial properties of mucus from the brown garden snail Helix aspersa

    Get PDF
    Research into naturally occurring antimicrobial substances has yielded effective treatments. One area of interest is peptides and proteins produced by invertebrates as part of their defence system, including the contents of mollusc mucus. Mucus produced by the African giant land snail, Achatina fulica has been reported to contain two proteins with broad-spectrum antibacterial activity. Mucus from the brown garden snail, Helix aspersa, appears to have skin regeneration properties. This study sought to investigate the antimicrobial properties of H. aspersa mucus. Mucus was collected from H. aspersa snails, diluted in phosphatebuffered saline (PBS), with the supernatant tested against a wide range of organisms in a disc-diffusion antimicrobial assay. This was followed with comparative experiments involving A. fulica, including bacteriophage assays. Mucus from both species of snail was passed through a series of protein size separation columns in order to determine the approximate size of the antimicrobial substance. Electrophoresis was also carried out on the H. aspersa mucus. Results indicated that H. aspersa mucus had a strong antibacterial effect against several strains of Pseudomonas aeruginosa and a weak effect against Staphylococcus aureus. Mucus from A. fulica also inhibited the growth of S. aureus, but the broad spectrum of activity reported by other workers was not observed. Antimicrobial activity was not caused by bacteriophage. Size separation experiments indicated that the antimicrobial substance(s) in H. aspersa were between 30 and 100 kDa. Electrophoresis revealed two proteins in this region (30–40 kDa and 50–60 kDa). These do not correspond with antimicrobial proteins previously reported in A. fulica. This study found one or more novel antimicrobial agents in H. aspersa mucus, with a strong effect against P. aeruginosa

    A facile approach to chemically modified graphene and its polymer nanocomposites

    Get PDF
    A scalable approach for the mass production of chemically modifi ed graphene has yet to be developed, which holds the key to the large-scale production of stable graphene colloids for optical electronics, energy conversion, and storage materials, catalysis, sensors, composites, etc. Here, a facile approach to fabricating covalently modifi ed graphene and its polymer nanocompos- ites is presented. The method involves: i) employing a common furnace, rather than a furnace installed with a quartz tube and operated in inert gas as required in previous studies, to treat a commercial graphite intercalation compound with thermal shocking and ultrasonication and fabricate graphene platelets (GnPs) with a thickness of 2.51 ± 0.39 nm that contain only 7 at% oxygen; ii) grafting these GnPs with a commercial, long-chain surfactant, which is able to create molecular entanglement with polymer matrixes by taking advantage of the reactions between the epoxide groups of the platelets and the end amine groups of the surfactant, to produce chemically modi- fi ed graphene platelets ( m - GnPs); and iii) solution-mixing m -GnPs with a commonly used polymer to fabricate nanocomposites. These m -GnPs are well dispersed in a polymer with highly improved mechanical properties and a low percolation threshold of electrical conductivity at 0.25 vol%. This novel approach could lead to the future scalable production of graphene and its nanocomposites

    Quantification of functionalised gold nanoparticle-targeted knockdown of gene expression in HeLa cells

    Get PDF
    Introduction: Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods: In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings: We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions: The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein

    Mild orotic aciduria in UMPS heterozygotes: a metabolic finding without clinical consequences

    Get PDF
    BACKGROUND: Elevated urinary excretion of orotic acid is associated with treatable disorders of the urea cycle and pyrimidine metabolism. Establishing the correct and timely diagnosis in a patient with orotic aciduria is key to effective treatment. Uridine monophosphate synthase is involved in de novo pyrimidine synthesis. Uridine monophosphate synthase deficiency (or hereditary orotic aciduria), due to biallelic mutations in UMPS, is a rare condition presenting with megaloblastic anemia in the first months of life. If not treated with the pyrimidine precursor uridine, neutropenia, failure to thrive, growth retardation, developmental delay, and intellectual disability may ensue. METHODS AND RESULTS: We identified mild and isolated orotic aciduria in 11 unrelated individuals with diverse clinical signs and symptoms, the most common denominator being intellectual disability/developmental delay. Of note, none had blood count abnormalities, relevant hyperammonemia or altered plasma amino acid profile. All individuals were found to have heterozygous alterations in UMPS. Four of these variants were predicted to be null alleles with complete loss of function. The remaining variants were missense changes and predicted to be damaging to the normal encoded protein. Interestingly, family screening revealed heterozygous UMPS variants in combination with mild orotic aciduria in 19 clinically asymptomatic family members. CONCLUSIONS: We therefore conclude that heterozygous UMPS-mutations can lead to mild and isolated orotic aciduria without clinical consequence. Partial UMPS-deficiency should be included in the differential diagnosis of mild orotic aciduria. The discovery of heterozygotes manifesting clinical symptoms such as hypotonia and developmental delay are likely due to ascertainment bias

    Determining the neurotransmitter concentration profile at active synapses

    Get PDF
    Establishing the temporal and concentration profiles of neurotransmitters during synaptic release is an essential step towards understanding the basic properties of inter-neuronal communication in the central nervous system. A variety of ingenious attempts has been made to gain insights into this process, but the general inaccessibility of central synapses, intrinsic limitations of the techniques used, and natural variety of different synaptic environments have hindered a comprehensive description of this fundamental phenomenon. Here, we describe a number of experimental and theoretical findings that has been instrumental for advancing our knowledge of various features of neurotransmitter release, as well as newly developed tools that could overcome some limits of traditional pharmacological approaches and bring new impetus to the description of the complex mechanisms of synaptic transmission

    Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications

    Get PDF
    In a marine environment, specific proteins are secreted by mussels and used as a bioglue to stick to a surface. These mussel proteins present an unusual amino acid 3,4-dihydroxyphenylalanine (known as DOPA). The outstanding adhesive properties of these materials in the sea harsh conditions have been attributed to the presence of the catechol groups present in DOPA. Inspired by the structure and composition of these adhesive proteins, we used dopamine-modified hyaluronic acid (HA-DN) prepared by carbodiimide chemistry to form thin and surface-adherent dopamine films. This conjugate was characterized by distinct techniques, such as nuclear magnetic resonance and ultraviolet spectrophotometry. Multilayer films were developed based on chitosan and HA-DN to form polymeric coatings using the layer-by-layer methodology. The nanostructured films formation was monitored by quartz crystal microbalance. The film surface was characterized by atomic force microscopy and scanning electron microscopy. Water contact angle measurements were also conducted. The adhesion properties were analyzed showing that the nanostructured films with dopamine promote an improved adhesion. In vitro tests showed an enhanced cell adhesion, proliferation and viability for the biomimetic films with catechol groups, demonstrating their potential to be used in distinct biomedical applications.The authors want to acknowledge the COST Action TD0906 - Biological adhesives: from biology to biomimetics. The authors also acknowledge the financial support from the Fundacao para a Ciencia e para a Tecnologia through the Ph.D. grants with the references SFRH/BD/73119/2010 and SFRH/BD/69529/2010. G. G. Ferrer acknowledges the support of the Spanish Ministry of Science and Innovation for the mobility grant JC2008-00135. G. Botelho acknowledges the NMR portuguese network (PTNMR, Bruker Avance III 400-Univ. Minho)

    Hermeneutics and Nature

    Get PDF
    This paper contributes to the on-going research into the ways in which the humanities transformed the natural sciences in the late Eighteenth and early Nineteenth Centuries. By investigating the relationship between hermeneutics -- as developed by Herder -- and natural history, it shows how the methods used for the study of literary and artistic works played a crucial role in the emergence of key natural-scientific fields, including geography and ecology

    Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance

    Get PDF
    A critical aspect in the development of biomaterials is the optimization of their surface properties to achieve an adequate cell response. In the present work, electrospun polycaprolactone nanofiber meshes (NFMs) are treated by radio-frequency (RF) plasma using different gases (Ar or O2), power (20 or 30 W), and exposure time (5 or 10 min). Morphological and roughness analysis show topographical changes on the plasma-treated NFMs. X-ray photoelectron spectroscopy (XPS) results indicate an increment of the oxygen-containing groups, mainly –OH and –C––O, at the plasma-treated surfaces. Accordingly, the glycerol contact angle results demonstrate a decrease in the hydrophobicity of plasma-treated meshes, particularly in the O2-treated ones. Three model cell lines (fibroblasts, chondrocytes, and osteoblasts) are used to study the effect of plasma treatments over the morphology, cell adhesion, and proliferation. A plasma treatment with O2 and one with Ar are found to be the most successful for all the studied cell types. The influence of hydrophilicity and roughness of those NFMs on their biological performance is discussed. Despite the often claimed morphological similarity of NFMs to natural extracellular matrixes, their surface properties contribute substantially to the cellular performance and therefore those should be optimized.This work was partially supported by the European Integrated Project GENOSTEM (LSH-STREP-CT-2003-503161) and the European Network of Excellence EXPERTISSUES (NMP3-CT2004-500283). The Portuguese Foundation for Science and Technology for the project Naturally Nano (POCI/EME/589821 2004) and the Ph.D. grant of A. Martins (SFRH/BD/24382/2005) is also acknowledged

    Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using √s=8 TeV proton-proton collision data

    Get PDF
    A search for squarks and gluinos in final states containing high-p T jets, missing transverse momentum and no electrons or muons is presented. The data were recorded in 2012 by the ATLAS experiment in s√=8 TeV proton-proton collisions at the Large Hadron Collider, with a total integrated luminosity of 20.3 fb−1. Results are interpreted in a variety of simplified and specific supersymmetry-breaking models assuming that R-parity is conserved and that the lightest neutralino is the lightest supersymmetric particle. An exclusion limit at the 95% confidence level on the mass of the gluino is set at 1330 GeV for a simplified model incorporating only a gluino and the lightest neutralino. For a simplified model involving the strong production of first- and second-generation squarks, squark masses below 850 GeV (440 GeV) are excluded for a massless lightest neutralino, assuming mass degenerate (single light-flavour) squarks. In mSUGRA/CMSSM models with tan β = 30, A 0 = −2m 0 and μ > 0, squarks and gluinos of equal mass are excluded for masses below 1700 GeV. Additional limits are set for non-universal Higgs mass models with gaugino mediation and for simplified models involving the pair production of gluinos, each decaying to a top squark and a top quark, with the top squark decaying to a charm quark and a neutralino. These limits extend the region of supersymmetric parameter space excluded by previous searches with the ATLAS detector

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore