21 research outputs found
Recent Advancement of Sustainable and Renewable Energy in Osmotic Power Generation
Investment in clean energy is demand in this century due to abundance of CO2 accumulation in the world to cause several environmental issues. Therefore, harvesting clean energy may assist in reducing carbon footprint in the world to create a green environment for sustainable living. The salinity gradient energy is one of the clean energies with the concept of mixing both salt concentration water from the ocean and fresh water from the river to create an osmotic pressure to power-up the generator for the production of electrical energy. Salinity different between the oceanic salt water and fresh water could produce an equilibrium osmotic pressure that achieve up to 27 bars equivalent from resulting pressure under the water for 200 to 300 meters. The potential of the power production through osmosis power generator is capture at the value of 2000 TWh per year, where in 2018 the world energy consumption was growing 2.3%, in which twice the number compare to the average rate of the growth. The major energy consumption is contributed from fossil fuel and consequently resulted from emissions of CO2 increased to 33.1 Gt to the atmosphere. This work explained the advantage of using salinity gradient energy and the fundamental principle of blue energy from pressure-retarded osmosis (PRO). Thus, the osmotic power by using different salinity gradient to create energy is widely known as blue energy, in which it is green and sustainable to produce electricity to the local communities
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Renewable Energy from Osmosis: Design and Model Pressure Retarded Osmosis System
Pressure Retarded Osmosis (PRO) shows notable potential as a renewable bioenergy alternative to counter water and energy shortage. To make PRO a reliable energy source, technological advances and in-depth research are required to improve its feasibility and cost efficiency. This research therefore aims to establish a mathematical model for simulating the power output of the laboratory scale PRO system. Consideration of concentrative polarization (ICP and ECP) effect on output power density is included as it is the key factor that impact the performance. The model is then used to simulate the output of four membrane samples, result shows an average accuracy of 99.55 %. Membrane 3 provides the maximum power density of 41.97 W/m2 among the membranes. It is then chosen and improved by deciding the optimal conditions for its operation. The first method of optimisation is by stabilising the effective membrane concentration. It can be achieved by retaining the draw solution concentration using automated dosing method