22 research outputs found

    The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode

    Get PDF
    Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    Behavioural plasticity in Argyrodes antipodiana.

    Get PDF
    In this thesis I look at the behavioural plasticity of A.antipodiana while foraging and interacting with conspecifics. The aim is to see how an animal, with apparently limited intelligence is able to deal with environmental variability. I conclude that A.antipodiana appears to have been able to overcome these limitations very effectively by using four methods, of which the first two effectively reduce the amount of learning necessary. Firstly, A.antipodiana simplifies the situation as much as possible by ignoring some of the variability. For example, in social situations, A.antipodiana appears to recognize only a few categories of conspecifics, rather than recognize conspecifics as individuals. Consequently, the social groups of A.antipodiana are not characterized by complicating factors such as aggressive orders or dominance hierarchies. Secondly, A.antipodiana largely ignores current situations and instead bases much of its behavioural decisions on its internal conditions. For example, in male-male conflicts, males respond to their opponents largely according to their own size, level of hunger, the number of contests in which they have participated, or their past experience of winning or losing; rather than to the characteristics of their opponents. Likewise in social interactions A.antipodiana is more inclined to be aggressive towards conspecifics if it itself is foraging, and less inclined if it is feeding with the host. When the situation cannot be simplified, A.antipodiana adopts a third response which is to use the simplest method possible for adjusting its behaviour. For example, A.antipodiana's ability to develop araneophagic skills appears to be governed by a critical period. Thus rather than developing araneophagic skills through trial and error with practise, the ability appears to be simply 'switched on' if required. The fourth means by which A.antipodiana compensates for limited intelligence is to be very selective in the areas in which it does use learning. For example, A.antipodiana seems to use problem solving when foraging, but only when it is actually trying to reach the food bundle upon which the host is feeding. A.antipodiana also seems to learn to move more stealthfully on the host's web. There is even evidence that A.antipodiana may behave with intent when males are competing for opportunities to copulate. Thus the intelligence of A.antipodiana appears to be severely limited. However, despite these limitations, by reducing the amount of learning necessary, and then channelling what learning it has to very restricted, but very poignant areas of its behaviour, A.antipodiana, is able to respond very effectively to its variable environment

    On Spanish Dvandva and its restrictions

    Get PDF
    As noted by Bauer, real dvandva compounds –that is, coordinative compounds that properly express the aggregation of two different entities, not the intersection of properties in one entity– are extremely rare in English or Spanish. This article explores the empirical domain of dvandva compounding in Spanish, and notes that they are productive when not used as heads within their phrases. We propose that the explanation for this is that Spanish can only productively build dvandva compounds using flat structures without internal hierarchy. This causes the compound to look externally for a head noun that defines the interpretation of the relation established between the two members of the dvandva. The proposal also explains why proper names is preferred in dvandva compounding, given that they do not denote properties

    In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells

    No full text
    Hematopoietic stem cells (HSCs) maintain the turnover of mature blood cells during steady state and in response to systemic perturbations such as infections. Their function critically depends on complex signal exchanges with the bone marrow (BM) microenvironment in which they reside, but the cellular mechanisms involved in HSC-niche interactions and regulating HSC function in vivo remain elusive. We used a natural mouse parasite, Trichinella spiralis, and multipoint intravital time-lapse confocal microscopy of mouse calvarium BM to test whether HSC-niche interactions may change when hematopoiesis is perturbed. We find that steady-state HSCs stably engage confined niches in the BM whereas HSCs harvested during acute infection are motile and therefore interact with larger niches. These changes are accompanied by increased long-term repopulation ability and expression of CD44 and CXCR4. Administration of a CXCR4 antagonist affects the duration of HSC-niche interactions. These findings suggest that HSC-niche interactions may be modulated during infection

    Transgene-Free Genome Editing by Germline Injection of CRISPR/Cas RNA

    No full text
    Genome modification by CRISPR/Cas offers its users the ability to target endogenous sites in the genome for cleavage and for engineering precise genomic changes using template-directed repair, all with unprecedented ease and flexibility of targeting. As such, CRISPR/Cas is just part of a set of recently developed and rapidly improving tools that offer great potential for researchers to functionally access the genomes of organisms that have not previously been extensively used in a laboratory setting. We describe in detail protocols for using CRISPR/Cas to target genes of experimental organisms, in a manner that does not require transformation to obtain transgenic lines and that should be readily applicable to a wide range of previously little-studied species
    corecore