530 research outputs found
Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis
<p>Abstract</p> <p>Background</p> <p>Osteoarthritis (OA) is a debilitating, progressive joint disease.</p> <p>Methods</p> <p>Similar to the disease progression in humans, sequential events of early cartilage degradation, subchondral osteopenia followed by sclerosis, and late osteophyte formation were demonstrated in the anterior cruciate ligament transection (ACLT) or ACLT with partial medial meniscectomy (ACLT + MMx) rat OA models. We describe a reliable and consistent method to examine the time dependent changes in the gene expression profiles in articular cartilage and subchondral bone.</p> <p>Results</p> <p>Local regulation of matrix degradation markers was demonstrated by a significant increase in mRNA levels of aggrecanase-1 and MMP-13 as early as the first week post-surgery, and expression remained elevated throughout the 10 week study. Immunohistochemistry confirmed MMP-13 expression in differentiated chondrocytes and synovial fibroblasts at week-2 and cells within osteophytes at week-10 in the surgically-modified-joints. Concomitant increases in chondrocyte differentiation markers, Col IIA and Sox 9, and vascular invasion markers, VEGF and CD31, peaked around week-2 to -4, and returned to Sham levels at later time points in both models. Indeed, VEGF-positive cells were found in the deep articular chondrocytes adjacent to subchondral bone. Osteoclastic bone resorption markers, cathepsin K and TRAP, were also elevated at week-2. Confirming bone resorption is an early local event in OA progression, cathepsin K positive osteoclasts were found invading the articular cartilage from the subchondral region at week 2. This was followed by late disease events, including subchondral sclerosis and osteophyte formation, as demonstrated by the upregulation of the osteoanabolic markers runx2 and osterix, toward week-4 to 6 post-surgery.</p> <p>Conclusions</p> <p>In summary, this study demonstrated the temporal and cohesive gene expression changes in articular cartilage and subchondral bone using known markers of OA progression. The findings here support genome-wide profiling efforts to elucidate the sequential and complex regulation of the disease.</p
Nicotinic Acetylcholine Receptors Containing α6 Subunits Contribute to Alcohol Reward-Related Behaviors
Evidence is emerging that neuronal nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine (DA) system are involved in mediating the reinforcing effects of alcohol. Midbrain DA neurons express high levels of α6 subunit-containing nAChRs that modulate DA transmission, implicating their involvement in reward-related behaviors. The present study assessed the role of α6-containing nAChRs in modulating alcohol reward using transgenic mice expressing mutant, hypersensitive α6 nAChR subunits (α6L9âČS mice). α6L9âČS mice and littermate controls were tested in three well-established models of alcohol reward: 24-hr two-bottle choice drinking, drinking in the dark (DID), and conditioned place preference (CPP). Confocal microscopy and patch-clamp electrophysiology were used to demonstrate the localization and function of hypersensitive α6 subunit-containing nAChRs. Results indicate that female α6L9âČS mice showed significantly higher alcohol intake at low concentrations of alcohol (3% and 6%) in the two-bottle choice procedure. Both male and female α6L9âČS mice drank significantly more in the DID procedure and displayed an alcohol-induced place preference using a low dose of alcohol (0.5 g/kg) that was ineffective in littermate controls. Confocal microscopy showed that α6 subunit-containing nAChRs are selectively expressed on ventral tegmental area (VTA) DAergic, but not GABAergic neurons. Patch-clamp electrophysiology demonstrated that VTA DA neurons of α6L9âČS mice are hypersensitive to ACh. Collectively, these results suggest that α6L9âČS mice are more sensitive to the rewarding effects of alcohol, and suggest that VTA α6 subunit-containing nAChRs modulate alcohol reward. Thus, α6 subunit-containing nAChRs may be a promising therapeutic target for treatment of alcohol use disorders
Broad targeting of resistance to apoptosis in cancer
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer
The Quantum Mitochondrion and Optimal Health
A sufficiently complex set of molecules, if subject to perturbation, will self-organise and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilise information. Recent research suggest that from its inception life embraced quantum effects such as âtunnellingâ and âcoherenceâ while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis â a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, while inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy ageing, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level
Development and validation of an interpretable machine learning-based calculator for predicting 5-year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study
Background Weight loss trajectories after bariatric surgery vary widely
between individuals, and predicting weight loss before the operation remains
challenging. We aimed to develop a model using machine learning to provide
individual preoperative prediction of 5-year weight loss trajectories after
surgery. Methods In this multinational retrospective observational study we
enrolled adult participants (aged 18 years) from ten prospective cohorts
(including ABOS [NCT01129297], BAREVAL [NCT02310178], the Swedish Obese
Subjects study, and a large cohort from the Dutch Obesity Clinic [Nederlandse
Obesitas Kliniek]) and two randomised trials (SleevePass [NCT00793143] and
SM-BOSS [NCT00356213]) in Europe, the Americas, and Asia, with a 5 year
followup after Roux-en-Y gastric bypass, sleeve gastrectomy, or gastric band.
Patients with a previous history of bariatric surgery or large delays between
scheduled and actual visits were excluded. The training cohort comprised
patients from two centres in France (ABOS and BAREVAL). The primary outcome was
BMI at 5 years. A model was developed using least absolute shrinkage and
selection operator to select variables and the classification and regression
trees algorithm to build interpretable regression trees. The performances of
the model were assessed through the median absolute deviation (MAD) and root
mean squared error (RMSE) of BMI. Findings10 231 patients from 12 centres in
ten countries were included in the analysis, corresponding to 30 602
patient-years. Among participants in all 12 cohorts, 7701 (753%) were
female, 2530 (247%) were male. Among 434 baseline attributes available
in the training cohort, seven variables were selected: height, weight,
intervention type, age, diabetes status, diabetes duration, and smoking status.
At 5 years, across external testing cohorts the overall mean MAD BMI was
28 kg/m (95% CI 26-30) and mean RMSE BMI was
47 kg/m (44-50), and the mean difference
between predicted and observed BMI was-03 kg/m (SD 47).
This model is incorporated in an easy to use and interpretable web-based
prediction tool to help inform clinical decision before surgery.
InterpretationWe developed a machine learning-based model, which is
internationally validated, for predicting individual 5-year weight loss
trajectories after three common bariatric interventions.Comment: The Lancet Digital Health, 202
beta 2 subunit contribution to 4/7 alpha-conotoxin binding to the nicotinic acetylcholine receptor
The structures of acetylcholine-binding protein ( AChBP) and nicotinic acetylcholine receptor ( nAChR) homology models have been used to interpret data from mutagenesis experiments at the nAChR. However, little is known about AChBP-derived structures as predictive tools. Molecular surface analysis of nAChR models has revealed a conserved cleft as the likely binding site for the 4/7 alpha-conotoxins. Here, we used an alpha 3 beta 2 model to identify beta 2 subunit residues in this cleft and investigated their influence on the binding of alpha-conotoxins MII, PnIA, and GID to the alpha 3 beta 2 nAChR by two-electrode voltage clamp analysis. Although a beta 2-L119Q mutation strongly reduced the affinity of all three alpha-conotoxins, beta 2-F117A, beta 2-V109A, and beta 2-V109G mutations selectively enhanced the binding of MII and GID. An increased activity of alpha-conotoxins GID and MII was also observed when the beta 2-F117A mutant was combined with the alpha 4 instead of the alpha 3 subunit. Investigation of A10L-PnIA indicated that high affinity binding to beta 2-F117A, beta 2-V109A, and beta 2-V109G mutants was conferred by amino acids with a long side chain in position 10 (PnIA numbering). Docking simulations of 4/7 alpha-conotoxin binding to the alpha 3 beta 2 model supported a direct interaction between mutated nAChR residues and alpha-conotoxin residues 6, 7, and 10. Taken together, these data provide evidence that the beta subunit contributes to alpha-conotoxin binding and selectivity and demonstrate that a small cleft leading to the agonist binding site is targeted by alpha-conotoxins to block the nAChR
Anaerobic digestion of screenings for biogas recovery
Screenings comprise untreatable solid materials that have found their way into the sewer. They are removed during preliminary treatment at the inlet work of any wastewater treatment process using a unit operation termed as a screen and at present are disposed of to landfill. These materials, if not removed, will damage mechanical equipment due to its heterogeneity and reduce overall treatment process, reliability and effectiveness. That is why this material is retained and prevented from entering the treatment system before finally being disposed of. The amount of biodegradable organic matter in screenings often exceeds the upper limit and emits a significant amount of greenhouse gases during biodegradation on landfill. Nutrient release can cause a serious problem of eutrophication phenomena in receiving waters and a deterioration of water quality. Disposal of screenings on landfill also can cause odour problem due to putrescible nature of some of the solid material. In view of the high organic content of screenings, anaerobic digestion method may not only offer the potential for energy recovery but also nutrient. In this study, the anaerobic digestion was performed for 30,days, at controlled pH and temperature, using different dry solids concentrations of screenings to study the potential of biogas recovery in the form of methane. It was found screenings have physical characteristics of 30% total solids and 93% volatile solids, suggesting screenings are a type of waste with high dry solids and organic contents. Consistent pH around pH 6.22 indicates anaerobic digestion of screenings needs minimum pH correction. The biomethane potential tests demonstrated screenings were amenable to anaerobic digestion with methane yield of 355,m3/kg VS, which is comparable to the previous results. This study shows that anaerobic digestion is not only beneficial for waste treatment but also to turn waste into useful resources
Recent Advances in Nicotinic Receptor Signaling in Alcohol Abuse and Alcoholism
Alcohol is the most commonly abused legal substance and alcoholism is a serious public health problem. It is a leading cause of preventable death in the world. The cellular and molecular mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits have been shown to increase the vulnerability to develop alcohol dependence. Here, we review recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, associated signaling molecules, and pathways that contribute to the molecular mechanisms of alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular underpinnings may be useful for the advancement of brain nicotinic-cholinergic mechanisms, and will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid conditions
Dorsal Striatum and Its Limbic Connectivity Mediate Abnormal Anticipatory Reward Processing in Obesity
Obesity is characterized by an imbalance in the brain circuits promoting reward seeking and those governing cognitive control. Here we show that the dorsal caudate nucleus and its connections with amygdala, insula and prefrontal cortex contribute to abnormal reward processing in obesity. We measured regional brain glucose uptake in morbidly obese (nâ=â19) and normal weighted (nâ=â16) subjects with 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET) during euglycemic hyperinsulinemia and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures. First, we found that glucose uptake rate in the dorsal caudate nucleus was higher in obese than in normal-weight subjects. Second, obese subjects showed increased hemodynamic responses in the caudate nucleus while viewing appetizing versus bland foods in fMRI. The caudate also showed elevated task-related functional connectivity with amygdala and insula in the obese versus normal-weight subjects. Finally, obese subjects had smaller responses to appetizing versus bland foods in the dorsolateral and orbitofrontal cortices than did normal-weight subjects, and failure to activate the dorsolateral prefrontal cortex was correlated with high glucose metabolism in the dorsal caudate nucleus. These findings suggest that enhanced sensitivity to external food cues in obesity may involve abnormal stimulus-response learning and incentive motivation subserved by the dorsal caudate nucleus, which in turn may be due to abnormally high input from the amygdala and insula and dysfunctional inhibitory control by the frontal cortical regions. These functional changes in the responsiveness and interconnectivity of the reward circuit could be a critical mechanism to explain overeating in obesity
- âŠ