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Abstract

Alcohol is the most commonly abused legal substance and alcoholism is a serious public health 

problem. It is a leading cause of preventable death in the world. The cellular and molecular 

mechanisms of alcohol reward and addiction are still not well understood. Emerging evidence 

indicates that unlike other drugs of abuse, such as nicotine, cocaine, or opioids, alcohol targets 

numerous channel proteins, receptor molecules, and signaling pathways in the brain. Previously, 

research has identified brain nicotinic acetylcholine receptors (nAChRs), a heterogeneous family 

of pentameric ligand-gated cation channels expressed in the mammalian brain, as critical 

molecular targets for alcohol abuse and dependence. Genetic variations encoding nAChR subunits 

have been shown to increase the vulnerability to develop alcohol dependence. Here, we review 

recent insights into the rewarding effects of alcohol, as they pertain to different nAChR subtypes, 

associated signaling molecules, and pathways that contribute to the molecular mechanisms of 

alcoholism and/or comorbid brain disorders. Understanding these cellular changes and molecular 

underpinnings may be useful for the advancement of brain nicotinic–cholinergic mechanisms, and 

will lead to a better translational and therapeutic outcome for alcoholism and/or comorbid 

conditions.

1. INTRODUCTION

Alcohol is the most commonly abused legal substance by humans. Alcoholism is a complex 

and chronic relapsing disorder that represents a serious global public health problem.1 

Alcoholism related deaths are estimated to account for 4% of all deaths worldwide and this 

number will be higher in the coming decades.2 The prevalence of fetal alcohol syndrome, 

caused by mother’s alcohol abuse and dependence, is also a significant problem in the 

United States and other industrialized nations.3 The estimated healthcare and economic cost 

from alcohol abuse and alcoholism in the United States, is significantly higher than many 

other diseases, including cancer.4 Thus, there is a need for better understanding of this 

complex brain disorder, for better therapeutic approaches to reduce alcohol abuse and 

relapse. Like nicotine addiction, emerging evidence suggests that neuronal nicotinic 

acetylcholine receptors (nAChRs), in the mesocorticolimbic-dopamine system, mediate the 
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rewarding effects of alcohol and the development of alcohol dependence.5–9 Therefore, 

nAChRs are potential molecular targets for alcohol abuse and alcoholism. The primary focus 

of this review is to provide new insights into the rewarding effects of alcohol, as they pertain 

to different nAChR subtypes and other cholinergic factors that contribute to the molecular 

mechanisms of alcoholism. Understanding these cellular changes and molecular 

underpinnings, will lead to a better translational and therapeutic outcome of alcoholism. 

Considering the diversity of nAChRs in the brain, this chapter will discuss the role of 

different nAChR subunits, involving alcohol abuse and alcoholism obtained from genetic, 

preclinical, and clinical studies. In addition, the role of nAChRs in alcohol, nicotine 

coabuse, and other comorbid brain disorders will be discussed. The molecular targets and 

neurobiological mechanisms within the nAChRs system may offer a better understanding 

and effective therapeutic alternative to combat this complex relapsing brain disorder.

2. MESOLIMBIC-DOPAMINE SYSTEM AND nAChRs

Genetic, preclinical, and clinical studies have identified the brain nAChRs and membrane 

bound ion channels in the mesolimbic-dopamine system, as being involved in alcohol 

dependence.10–18 The nAChRs are pentameric ligand-gated cation channels with a diverse 

composition, which is widely expressed throughout the central nervous system (CNS).19–22 

The nAChR-mediated signaling plays a critical role in many drug addiction processes, 

including the development of alcoholism.23–27 Twelve neuronal nAChR subunits, which are 

classified as either alpha subunits (β2–β10) or beta subunits (β2–β4), have been 

identified.19,28–31 These subunits assemble to form diverse functional nAChRs, which can 

be further subdivided into two major groups of brain nAChR subtypes.23,24,27 For example, 

heteromeric receptors are assembled from both alpha (β2–β6) and beta subunits. The 

functional properties of such heteromeric receptors, depend on both the specific β and β 

subunits within the receptor complex and the β:β ratio of the subunits.28–31 Previous 

research indicates that the most abundant nAChRs in the CNS are β4β2★, receptors 

containing both β4 and β2 subunits, and sometimes additional subunits (denoted by the 

asterisk). These receptors account for >90% of the high affinity nicotine binding sites in the 

brain.30 The β4 and β2 subunits are colocalized in many parts of the brain, including 

thalamic nuclei, cortex, and ventral striatum.19,30

On the other hand, homomeric receptors, such as, β7 nAChR subtypes, are predominantly 

located in the hippocampal regions and cortical or subcortical regions, including the ventral 

striatum.31 In addition, neuronal nAChRs containing β6 subunits are expressed in dopamine-

rich areas (e. g., the mesocorticolimbic reward neurocircuit). Thus, β6★ receptors may be a 

new/novel drug target to treat many forms of drug addiction, including alcohol 

dependence.25 A number of invitro or invivo studies have confirmed that alcohol activates 

the mesolimbic-dopamine system and elevates the synaptic release of dopamine in the 

ventral striatum, which partially mediates the rewarding effects of alcohol and other drugs of 

abuse.32–35 Therefore, mesocorticolimbic nAChRs are considered to be a molecular switch, 

activated by addictive behaviors.9,15,36–38 Neuronal nAChRs are widely expressed at the 

synapse, cell body, and axons in the CNS.21 Presynaptic nAChRs are involved in regulating 

the release of ACh, monoamines, and amino acids.39–43 In particular, dopamine release is 
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regulated by β4β2★, β3β2★, and β6★ nAChRs (★ indicates a possible involvement of other 

receptor subunits) in nigrostriatal/mesocorticolimbic terminals.44–47

3. KNOCKOUT AND TRANSGENIC MODELS AND nAChRs

Recent reports with nAChR subtype knockout (KO) mice have provided important 

information about both brain nAChR function and the mediation of addiction-related 

behavior.23,48,49 For example, early research showed that mice lacking the β2 subunit do not 

display too many nicotine-associated responses, including nicotine-induced DA release in 

the dorsal and ventral striatum, as well as nicotine-elicited increases in the firing rate of 

associated DA neurons.50,51 The lack of nicotine effect on the mesolimbic DA systems in β2 

subtype nAChR KO mice is consistent with the absence of nicotine self-administration by 

these animals.51 The β4 subunit requires a β2 subunit for assembly in a majority of 

heteromeric nAChRs in the brain. These and other studies using genetically modified mice 

suggest that β4/β2★ nAChRs are critical for nicotine-related reward behaviors.52,53 Despite 

the distribution of the β7 subunit in the brain, in particular its presence in the 

mesocorticolimbic system, studies in β7 KO mice are not definitive about a role for the β7 

subunit in nicotine reward and conditioning.48 However, β7★ nAChRs are important for 

long-term potentiation, neuroplasticity associated with learning, and memory in the 

mesolimbic reward pathway.48 KO mouse studies targeting the β6 subunit indicate that β6 

partners with β2 nAChRs and may play an important role in nicotine addiction related 

behavior.54 Like nicotine addiction, genetic studies have revealed that nAChRs are involved 

in ethanol self-administration, and reward behavior as well.11 For example, a number of 

genetic studies have been conducted to identify the role of nAChR subtypes in ethanol-

drinking behavior. Acute ethanol drinking behavior is reduced in β4 KO mice, compared to 

wild type (WT), indicating a role for the nAChR β4★subunit in ethanol abuse.11,26 

Similarly, ethanol-related behavior and ethanol-induced midbrain dopaminergic function get 

decreased in β4 KO mice.55 On the other hand, β2 KO mice behave similar to WT type mice 

in ethanol drinking behaviors.56 In addition, β6 KO and β3 KO mice also display ethanol 

drinking behavior that is similar to WT mice in a two-bottle ethanol drinking paradigm.56 

Moreover, β7 KO and WT mice consume similar amounts of ethanol, although there was a 

potential gender effect regarding β7 nAChRs effects on ethanol consumption.56 Again, β5 

KO mice do not differ in acute ethanol consumption, compared to WT mice.57 Like 

nicotine-related behavior (as mentioned earlier), studies with transgenic over expression of 

the β5, β3, and β4 receptor subunit genes indicate these subunits have a complex role in the 

modulation of ethanol-related behaviors.58 Together, these data indicate that nAChRs 

containing β5, β6, β2, or β3 subunits may not be critical in ethanol drinking behaviors. 

Overall, the evidence suggests that β4 receptors in the midbrain may be essential for 

ethanol-related behavior. These studies represent genetic mechanisms in ethanol 

dependence, involving brain nAChRs and associated neurobiological mechanisms.

It is widely recognized that brain nAChR subtypes are important mediators of the rewarding 

effects of ethanol and drugs of abuse.55,59–66 For example, systemic or local administration 

of nAChR ligands reduce ethanol drinking in a number of animal models.32,60,61,65 

Furthermore, nAChRs in the ventral tegmental area (VTA) regulate ethanol consumption 

and associated mesolimbic neurochemical effects (e.g., dopamine release in the nucleus 
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accumbens (Acb)), as shown in various preclinical studies.60,62 However, some of these 

ligands produce mixed effects in alcohol/ethanol drinking behavior in humans,59,63 

indicating mixed efficacy for treating ethanol dependence through nAChRs in the 

mesolimbic-dopamine system. Similarly, specific nAChR ligands may be resistant to 

pharmacologically efficacious reductions in ethanol drinking behavior, thus suggesting a 

role for other nAChR targets, such as β6β2★.33,36 Additional studies with the β7 nAChR 

ligand were found to be ineffective in reducing ethanol-taking behavior of animal models.56 

In other works, a partial β4β2★ nAChR agonist was shown to reduce alcohol drinking in 

both animal models and humans.16,26,56,65,67–75 Given the mixed results with 

pharmacological efficacy on ethanol drinking behavior, the role of specific nAChR subtypes 

needs further investigation. Additional studies with cytisine, a partial agonist at β4β2★ and 

lobeline, which is a nonselective antagonist, were found to reduce ethanol-taking behavior in 

a number of preclinical models.17,66,73–77 Interestingly, these nAChR ligands also altered 

alcohol-induced increases in mesolimbic tissue DA levels in mice,77 supporting the 

important role of mesolimbic nAChRs in alcohol dependence. Confirming this, the nAChR 

ligands were found to reduce ethanol-taking behavior in a genetic animal model for alcohol 

abuse and dependence78 or inbred mice,74 indicating nAChRs are potential molecular 

targets for individuals with a genetic predisposition to develop alcohol dependence.

Thus, evidence suggests that selective desensitization of nAChRs with partial agonistic 

activity79,80 reduces ethanol-taking behavior in rats selectively bred for an alcohol 

preference.80,81 In addition with the involvement of nAChRs in ethanol-taking behavior, 

some of these ligands26,75,81,82 also decrease the alcohol deprivation effect, which is an 

animal model of relapse behavior.78,83–87 Emerging preclinical studies suggest that nicotine 

exposure reinstates alcohol seeking behaviors in rodents following extinction of alcohol 

reinforcement.88,89 Therefore, examination of cholinergic mechanisms associated with 

relapse is also important for new drug development to treat ethanol abuse and 

dependence.5,90 Overall, the existing animal and human studies suggest that ethanol-induced 

activation of the mesolimbic DA system involves brain diverse nAChRs stimulation, 

including β4β2★, β6β2★, as well as β3β4★ subtypes.91 Thus, central nAChRs continue to be 

critical targets for the reinforcing and DA-activating effects of ethanol and underscore the 

need to conduct more subunit-specific nAChR research regarding ethanol abuse and 

dependence.

4. ALCOHOL, NICOTINE COABUSE, AND nAChRs

Due to the prevalence of ethanol and nicotine couse,92 and the extremely high rates of 

smoking in individuals diagnosed with alcohol dependence,93,94,95 investigators have been 

working to develop models of coabuse in animals. However, till date very few such models 

have been validated. In one such model, within-session intravenous nicotine and oral ethanol 

drinking was demonstrated in Wistar rats.96 More recently, ethanol-preferring (P) rats show 

oral operant intake of combined ethanol and nicotine solutions, that results in blood ethanol 

concentrations of approximately 100 mg% and blood nicotine levels of approximately 25 

ng/mL. These levels are similar to levels obtained in human binge drinking and smoking.97 

Additionally, in adolescent C57BL/6 mice, exposure to cigarette smoke for 6 h/day for 16 

days increased intake of 10% ethanol three to five fold in a scheduled access paradigm.98 
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Also, chronic nicotine exposure in C3H mice during adolescence enhances ethanol 

withdrawal effects in adulthood.99

In a study using rats selectively bred for high versus low locomotor activity induced by a 

novel field, it was found that adolescent exposure to nicotine facilitated an ethanol-induced 

conditioned place preference in early adulthood.100 Regarding β4β2★ receptors, a recent 

study revealed that chronic ethanol exposure/intake, including in utero exposure, by rhesus 

monkeys significantly decreased β4β2★ levels in the frontal and insular cortex.101 In a study 

involving in utero exposure of rats, it was found that gestational exposure to ethanol and 

nicotine significantly increased nicotine self-administration during adolescence, and this 

effect seemed to be due to glutamatergic modulation of the mesolimbic-dopamine 

system.102 These data suggest a possible interaction between stages of development and 

cigarette smoke/nicotine exposure to increase ethanol and/or nicotine intake through 

different mechanisms that may extend into adulthood.

Animals selected for ethanol preference also show an increased sensitivity to the reinforcing 

effects of various drugs, including nicotine.97 For instance, the P rat shows elevated 

sensitivity to the self-administration of intravenous nicotine, compared to the nonpreferring 

(NP) rat.103 Consistent with this finding, P-rats are more sensitive than Wistar rats to the 

self-administration of nicotine directly into the posterior ventral tegmental area (pVTA) 

using the intracranial self-administration technique,104 and ethanol and nicotine are co-self-

administered into the pVTA at low concentrations that do not support self-administration 

individually.105 However, in a recent study employing DBA/2J mice, nicotine was found to 

enhance the locomotor stimulating, but not the conditioned rewarding effects of ethanol, 

suggesting that in this model, combined stimulant effects of nicotine and ethanol do not 

predict enhanced reward.106,107

Overall, current data suggest that ethanol and nicotine coabuse is rooted in the basic 

biological underpinnings of both drugs, supposedly by targeting β4β2★ nAChR subtype in 

the mesolimbic-dopamine system. The drugs may function synergistically on some measures 

and each drug affects the other in terms of abuse liability. Emerging findings would suggest 

that the selection of ethanol-preference may increase the potential intake of nicotine 

coabuse, and adolescent coabuse may be lead to elevated levels of coabuse in adulthood. 

Additional studies are clearly needed to provide a better understanding of the mechanisms 

that are involved in ethanol and nicotine coabuse.

5. GENETIC POLYMORPHISMS, ALCOHOL DEPENDENCE AND nAChRs

Emerging evidence indicates that cholinergic genes may play a significant role in ethanol-

dependent behavior.108 For example, significant associations between CHRNA6 

polymorphisms (rs1072003, rs2304297, and rs892413) as well as CHRNB3 polymorphism 

(rs13280604) and excessive ethanol-drinking behavior have been reported.109 In a recent 

study, using Hispanic and non-Hispanic white subjects from the Social and Emotional 

Contexts of Adolescent Smoking Patterns, revealed multiple polymorphisms of CHRNA4 

were associated with a significantly elevated risk for adolescent binge drinking.110 These 

authors reported that polymorphisms for other nAChR genes were not associated with this 
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risk, which may be related to the ethnicity of the sample. Additional studies from the 

Nicotine Addiction Genetics consortium in Finland, reported a significant association 

between the CHRNB4 polymorphism rs11636753 and regular ethanol drinking with 

comorbidity for depression, which may have been sex dependent.111 Regarding addiction in 

general, although polysubstance abuse may be a factor, the CHRNA5 risk polymorphism 

(rs16969968) is not only associated with nicotine dependence,112 but also associated with 

other drugs of abuse, such as cocaine.113 Similarly, other CHRNA5 polymorphisms 

(rs615470 and rs684513) have significant associations with ethanol and cocaine dependence, 

respectively.113 Given an early onset of ethanol, drug use and abuse increases the 

probability of developing dependence later in life, it is important to examine whether these 

effects are under genetic control. One studyexamining polymorphisms within the CHRNA5-

A3-B4 gene cluster found a significant association with the age of initiating the use of 

multiple abused substances.114 Similarly, recent findings from the San Diego Sibling Pair 

study indicate that, variants for CHRNA5 within this cluster are significantly associated with 

subjective level of response (i.e., intoxication) to ethanol.115 Interestingly, a recent study 

indicated missense variants in CHRNA3 may confer resistance to cocaine dependence in 

African Americans.116 However, it was also reported that a missense variant in CHRNB3 

called rs149775276, was significantly associated with ethanol and cocaine dependence in 

European Americans.116 Combined findings indicate that multiple polymorphisms 

associated with nAChR genes and addictions, have been identified. Moreover, these 

associations predict dependence on a number of abused substances and/or associated 

behaviors, across national, ethnic, and psychiatric groups. Taken together, these studies 

suggest that nAChRs could be important targets for the development of therapeutics 

targeting multiple addictions, including alcoholism.

6. ALCOHOL DEPENDENCE, COMORBID PSYCHIATRIC CONDITION AND 

nAChRs

Recent evidence indicates that nAChRs are involved in drug addiction and comorbid 

psychiatric disorders, such as anxiety or depression.117 Just as in nicotine addiction,118 it has 

been proposed that there is a relationship between ethanol dependence and 

depression.119,120 For example, patients with depression have higher rates of ethanol-related 

problems, than the general population.121,122 Ethanol abstinence-related depression 

increases the chance of relapse because people may use ethanol for self-medication.123 A 

number of studies have determined how genetic predisposition to high ethanol intake affects 

depression-like behavior, and how genetic predisposition to depression-like behavior affects 

ethanol intake in rats, but the results are not well established,124 probably due to the 

challenges of defining criteria for valid animal models of these disorders. Previous studies 

suggest that chronic ethanol consumption in mice increases depression-like behavior during 

abstinence from ethanol.125,126 Therefore, alcoholism and depression supposedly share 

common molecular targets and associated neurobiological mechanisms. For example, 

abstinence from ethanol increases ACh release in the Acb,127 and microdialysis studies 

indicate that ethanol abstinence induces rapid and sustained increases in extracellular ACh 

levels in the hippocampus.128 A reduction in serotonergic neurotransmission has also been 

implicated in subpopulations of alcoholic patients.129,130 And, the efficacy of selective 
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serotonin reuptake inhibitors (SSRIs) provides strong support for the role of serotonin in 

depression, although SSRI treatment efficacy is highly variable for maintaining long-term 

abstinence from ethanol.131 Alcoholism,132 nicotine addiction,133 and depression134,135 are 

disorders mediated by neuroplasticity including transcriptional control, especially with 

brain-derived neurotrophic factor (BDNF) and activity-regulated cytoskeleton-associated 

protein (Arc)136 pathways. Regarding this, prolonged exposure to and abstinence from 

ethanol causes long-lasting neuroadaptations, which may underlie the development of 

depression-like behavior.126 Moreover, chronic ethanol consumption reduces the expression 

of BDNF in the rat hippocampus, which is an effect seen in depression-like behavior in 

animal models.137 Given the common neurobiological mechanisms in ethanol dependence 

and comorbid depression, it is possible that β2★-nAChRs modulation and associated 

molecular mechanisms will be critical in reducing depression, in the presence of ethanol 

abuse and dependence. Therefore, the contribution of specific nAChR subtypes, and their 

molecular signaling in comorbid conditions, needs considerable additional investigation.

7. ALCOHOL, TRANSCRIPTION FACTORS, AND nAChRs

Evidence indicates that nAChRs modulate acute ethanol-induced increased expression of 

Fos family in the immediate early genes, such as c-Fos in midbrain dopaminergic 

neurons.17,26 In addition, both partial agonists and antagonists targeting nAChRs, reduce 

acute ethanol-induced c-Fos expression in the VTA and Acb.17,26 Similarly deltaFosB, 

which is a truncated splice variant of FosB gene, activity is associated with chronic ethanol 

exposure and neuroplasticity in the mesolimbic reward neurocircuit.138,139,140,141 Also, 

recent research suggests that nAChRs modulate deltaFosB upregulation in both ventral and 

dorsal striatum.76 For example, partial agonists at nAChRs reduce chronic ethanol drinking 

behavior and its associated striatal deltaFosB upregulation.76 Overall, these studies support 

the possible role of nAChRs in modulating long-lasting behavioral and molecular 

neuroadaptations that may be related to alcoholism. However, the role of nAChRs on other 

important transcription factors, such as cAMP-responsive element binding (CREB) 

expression requires further investigation.142,143

8. CONCLUSIONS

In this review, evidence has been presented for the fact that AChRs in the mesolimbic-

dopamine system are important molecular targets for ethanol abuse and alcoholism. It is 

evident from in vitro and in vivo studies that nAChRs are critically involved with synaptic 

activity of mesolimbic dopa-mine as well as associated cellular and molecular mechanisms, 

which underlie the addictive properties produced by ethanol. Given the variety of nAChR 

subtypes, localization and functions of these nAChRs are potential mediators of the complex 

neurobiological effects of ethanol. While the nAChR subtypes share a common structure, 

their pharmacological properties on drug addiction, including models of alcoholism, may 

depend on nAChR subunit composition. We believe that multiple nAChR subtypes could be 

targets for neurobiological effects of ethanol and their contribution to alcoholism. Therefore, 

understanding subtype-selective mechanisms will be critical for future translational research. 

Thus, brain nAChRs represent a potential molecular target for treating ethanol abuse and 

dependence. The fact that ethanol and nicotine addiction often cooccur in humans, is widely 
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recognized in this literature. Recent evidence indicates a genetic corelation between these 

two addictive disorders. Preclinical and clinical studies suggest that both nicotine and 

ethanol can, either directly or indirectly, activate the mesolimbic-dopamine system, which 

putatively mediates the rewarding effects and ethanol-induced addictive behavior, associated 

with nAChRs. Emerging data also indicate that neuronal nAChRs are involved in addiction 

and comorbid psychiatric disorders, such as anxiety or depression. Finally, it is important to 

note that nAChRs modulate important transcription factors, such as c-Fos or deltaFosB, in 

the mesolimbic-dopamine system that may be associated with chronic effects of ethanol. 

However, the role of nAChRs on CREB or BDNF expression associated with alcoholism 

remains to be determined. Overall, the evidence supporting a role for nAChRs in the 

neurobiological effects of ethanol is significant from a translational perspective, as are the 

implications of nAChRs in addictive behaviors, and a variety of comorbid psychiatric and 

cognitive conditions. Additional research and a refined understanding of the specific 

contribution of nAChR subtypes, and associated neurobiological mechanisms involving 

alcoholism and comorbid neuropsychiatric conditions, may identify new molecular targets 

and signaling pathways for the development of better treatment and prevention strategies.
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