940 research outputs found
GridWeaver: A Fully-Automatic System for Microarray Image Analysis Using Fast Fourier Transforms
Experiments using microarray technology generate large amounts
of image data that are used in the analysis of genetic function.
An important stage in the analysis is the determination of
relative intensities of spots on the images generated.
This paper presents GridWeaver,
a program that reads in images from a microarray experiment,
automatically locates subgrids and spots in the images,
and then determines the spot
intensities needed in the analysis of gene function.
Automatic gridding is performed by running
Fast Fourier Transforms on pixel intensity sums.
Tests on several data sets show that the program responds
well even on images that have significant noise,
both random and systemic
Transcriptome-wide functional characterization reveals novel relationships among differentially expressed transcripts in developing soybean embryos
Sense and antisense transcripts and primers chosen for validation of RNA-Seq-based expression level changes. Sense and antisense transcripts are shown with the corresponding annotation, primer pairs used for qPCR, time points of differential expression, and notes on the presence of additional melt curve peaks. (PPTX 39 kb
Cryospheric Study in the GRENE-Arctic Climate Change Research Project
第4回極域科学シンポジウム横断セッション:[IA] 「急変する北極気候システム及びその全球的な影響の総合的解明」―GRENE北極気候変動研究事業研究成果報告2013―11月12日(火) 国立極地研究所 2階大会議
An outline of GRENE research project 5 entitiled “Studies on greenhouse gas cycles in the Arctic and their responses to climate change"
第3回極域科学シンポジウム/特別セッション「これからの北極研究」11月28日(水) 国立極地研究所 2階大会議
Two Electrons in a Quantum Dot: A Unified Approach
Low-lying energy levels of two interacting electrons confined in a
two-dimensional parabolic quantum dot in the presence of an external magnetic
field have been revised within the frame of a novel model. The present
formalism, which gives closed algebraic solutions for the specific values of
magnetic field and spatial confinement length, enables us to see explicitly
individual effects of the electron correlation.Comment: 14 page
Pierse, Mary (ed.), George Moore: Artistic Visions and Literary Worlds.
Pierse, Mary (ed.), George Moore: Artistic Visions and Literary Worlds. Newcastle: Cambridge Scholars Press, 2006, xvii + 246 pp
Grounding knowledge and normative valuation in agent-based action and scientific commitment
Philosophical investigation in synthetic biology has focused on the knowledge-seeking questions pursued, the kind of engineering techniques used, and on the ethical impact of the products produced. However, little work has been done to investigate the processes by which these epistemological, metaphysical, and ethical forms of inquiry arise in the course of synthetic biology research. An attempt at this work relying on a particular area of synthetic biology will be the aim of this chapter. I focus on the reengineering of metabolic pathways through the manipulation and construction of small DNA-based devices and systems synthetic biology. Rather than focusing on the engineered products or ethical principles that result, I will investigate the processes by which these arise. As such, the attention will be directed to the activities of practitioners, their manipulation of tools, and the use they make of techniques to construct new metabolic devices. Using a science-in-practice approach, I investigate problems at the intersection of science, philosophy of science, and sociology of science. I consider how practitioners within this area of synthetic biology reconfigure biological understanding and ethical categories through active modelling and manipulation of known functional parts, biological pathways for use in the design of microbial machines to solve problems in medicine, technology, and the environment. We might describe this kind of problem-solving as relying on what Helen Longino referred to as “social cognition” or the type of scientific work done within what Hasok Chang calls “systems of practice”. My aim in this chapter will be to investigate the relationship that holds between systems of practice within metabolic engineering research and social cognition. I will attempt to show how knowledge and normative valuation are generated from this particular network of practitioners. In doing so, I suggest that the social nature of scientific inquiry is ineliminable to both knowledge acquisition and ethical evaluations
Anticipating Deep Mapping: Tracing the Spatial Practice of Tim Robinson
There has been little academic research published on the work of Tim Robinson despite an illustrious career, first as an artist of the London avant-garde, then as a map-maker in the west of Ireland, and finally as an author of place. In part, this dearth is due to the difficulty of approaching these three diverse strands collectively. However, recent developments in the field of deep mapping encourage us to look back at the continuity of Robinson’s achievements in full and offer a suitable framework for doing so. Socially engaged with living communities and a depth of historical knowledge about place, but at the same time keen to contribute artistically to the ongoing contemporary culture of place, the parameters of deep mapping are broad enough to encompass the range of Robinson’s whole practice and suggest unique ways to illuminate his very unusual career. But Robinson’s achievements also encourage a reflection on the historical context of deep mapping itself, as well as on the nature of its spatial practice (especially where space comes to connote a medium to be worked rather than an area/volume). With this in mind the following article both explores Robinson’s work through deep mapping and deep mapping through the work of this unusual artist
- …
