
GridWeaver : A Fully-Automatic System for Microarray

Image Analysis using Fast Fourier Transforms

John Paul C. Vergara1, Lenwood S. Heath2,

Ruth Grene3, Naren Ramakrishnan2, and Layne T. Watson2

1 Department of Information Systems and Computer Science

Ateneo de Manila University, Quezon City 1108, Philippines
2 Department of Computer Science

Virginia Tech, Blacksburg VA 24061, USA
3 Department of Plant Pathology, Physiology, and Weed Science

Virginia Tech, Blacksburg VA 24061, USA

Abstract

Motivation: Experiments using microarray technology generate large amounts of image
data that are used in the analysis of genetic function. An important stage in the analysis is
the determination of relative intensities of spots on the images generated.

Results: This paper presents GridWeaver, a program that reads in images from a
microarray experiment, automatically locates subgrids and spots in the images, and then
determines the spot intensities needed in the analysis of gene function. Automatic gridding
is performed by running Fast Fourier Transforms on pixel intensity sums. Tests on several
data sets show that the program responds well even on images that have significant noise,
both random and systemic.

Availability: Source code (written in C, compiled using gcc under the Linux operating
environment) is available from http://bioinformatics.cs.vt.edu/~jpv/gridweaver for
academic use.

Contact: jpvergara@ateneo.edu.
Supplementary Information: For information on the Expresso project, visit:

http://bioinformatics.cs.vt.edu/expresso/.

1 Introduction

The introduction of microarray technology in the mid-1990s has accelerated studies on gene
expression in recent years. A single microarray experiment involves thousands of gene samples,
providing large-scale gene expression data. The strategy involves hybridizing target cDNAs
(complementary DNA) with an array of DNA probes deposited by a robotic printer on a series
of glass slides. The cDNAs are labeled with distinct fluorescent dyes, poured over the slides,
and then washed off, leaving cDNA that bind with the gene samples. A laser-scanning device
then scans the slides to produce digitized images that reveal the extent of bound cDNA on each
sample.

The images produced by the scanner are processed through image analysis software. Each
sample corresponds to a spot in the image and the software computes the resulting intensities
for each spot. Often, a test cDNA target and a reference cDNA target are used, and the
relative intensities exhibited by each target for each sample are used to derive conclusions on
gene expression.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computer Science Technical Reports @Virginia Tech

https://core.ac.uk/display/10676184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

region

subgrid
patch

spot

Figure 1: Subgrids and spots in a microarray image.

There has been considerable attention devoted to the automatic analysis of microarray images
[1, 2, 3, 4, 5, 6, 9, 10, 11, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31]. Earlier methods and
software have often required much human intervention, particularly with respect to locating the
spots in the images. Significant progress has been made on minimizing this human intervention
and a variety of methods have been studied such as using morphological operations [1, 19, 23],
graph theoretical approaches [22], Markov models [10, 24], and various statistical methods [3, 21].

This paper discusses GridWeaver, a microarray image analysis system that automatically
locates spots in a microarray image using Fast Fourier Transforms (FFTs) [8]. GridWeaver is
part of the Expresso project [18, 29]. The project seeks to automate all stages in microarray
experiments, including microarray image analysis.

An image that a microarray scanner produces is, in its raw form, an h × w matrix of pixel
intensity values (values typically range from 0 to 65535). However, it can be viewed logically
as an m × n array of subgrids, where each subgrid contains an s × t array of spots. Figure 1
illustrates an example of this logical view of a microarray image. In the figure, the values for m,
n, s, and t, are 2, 2, 4, and 3, respectively. A region is a rectangular area that bounds a subgrid,
while a patch is a rectangular area that bounds a spot.

The image analysis system we discuss in this paper performs the necessary computations on
the input images given only the values for m, n, s, and t. The system is an update of an earlier
prototype [12], which had the following limitations:

• Subgrid regions were assumed to be evenly divided along the image. We have encountered
images where the subgrids were relatively close to each other and the distance between
the edge of the image and the subgrid closest to the edge is significant. This renders the
previous method of identifying subgrid regions inadequate.

• The prototype was susceptible to arbitrary noise such as bright bands of pixels and other
artifacts outside the spots and subgrids.

For the current version, the above limitations are addressed through more sophisticated uses of
FFTs.

GridWeaver operates in four phases:

2

Compute
Periods Regions

Subgrid
Find

coordinates
region

Load
Images

pixel

matrices
intensity

Find
Patches

coordinates
patch

TIFF
IMAGES

periods
spot

SPOT INTENSITIES

Compute

Intensities
Spot

Figure 2: Image Analysis Components.

1. Spot Period Computation. Using FFTs on the row and column sums of pixel intensities
in the image, this phase determines the vertical and horizontal distance between spots in
a subgrid.

2. Subgrid Region Identification. This phase determines the regions that contain the in-
dividual subgrids, through further analysis of the row and column intensity sums extracted
from the raw image. FFTs are obtained along the margins of the image to determine the
edges of the subgrids that are closest to the edges of the image. The subgrid regions for all
subgrids are then determined from these edges. The regions are described by rectangles
that contain each subgrid (see Figure 1).

3. Patch and Spot Identification. In this phase, coordinates of the subgrids are obtained
by analyzing their respective regions. Patches for each spot are then derived from these
coordinates.

4. Spot Intensity Computation. This phase analyzes each patch to determine which pixels
are part of a spot. For each spot, foreground and background intensities are computed
along with other statistical information. The method used for computing spot intensities
are consistent with the one introduced by Eisen and Brown [13, 14], although the software
we develop provides some flexibility in this phase to allow for alternative methods (see [7],
for example).

Figure 2 presents a diagram depicting the different phases and their relationships. The figure
includes an initial “Load Images” phase that reads in the TIFF images and stores them as pixel
intensity matrices. The four phases described above then use these matrices to perform their
respective computations.

3

2 Systems and Methods

In this section, we discuss the key methods used in GridWeaver.

Fast Fourier Transforms

Row and column pixel intensity sums in an image are analyzed using Fast Fourier Transforms
(FFTs). FFTs are applied to a signal that plots amplitudes over a time domain, to produce
a corresponding signal that plots amplitudes over a frequency domain. An amplitude in the
frequency domain depends on the amplitude and range in the time domain where the given
frequency occurs. Essentially, the signal is broken down into a series of sinusoids with different
frequencies.

In our context, we can consider a pixel intensity sum for a given row (or column) as the
amplitude for that row (or column). Our input signal thus consists of these sums over the
sequence of all rows (or columns) in the image. Observing that peaks that are almost equally
spaced occur around the spot centers, applying an FFT to this signal yields a high amplitude
for the frequency that corresponds to the regular occurrence of spots within a row (or column).
The reciprocal of this frequency provides a period or distance between the spot centers. FFT
analysis over the rows provide a vertical period, while analysis over the columns provide a
horizontal period (see phase 1 described in Section 1). In turn, these periods aid in determining
the coordinates of the regions and the patches for each spot in the image.

Spot Intensity Data

Eisen and Brown [13, 14] suggest a method for calculating intensities and ratios given a patch
and an expected spot diameter. The method attempts to address the effects of background noise
around each spot. First, spot pixels are distinguished from background pixels by assuming that
the spot center is the center of the patch and by using spot diameter information to determine
which pixels land within the spot circle. A local background intensity B for a patch is computed
as the median intensity of all background pixels. Let I be the mean or median intensity for spot
pixels in a patch. The background-corrected intensity for a spot is computed as I ′ = I −B.

In GridWeaver, spot centers and diameters are determined on a per-spot basis by analyzing
the pixel intensity sums of a patch. Intensities for both background and foreground pixels are
computed using these centers and diameters. Both mean and median intensities are provided as
output to allow users the flexibility of choosing which values to use for ratio computation.

3 Algorithms

In this section, key algorithms in the gridding process are presented. Figure 3 shows the main
algorithm for GridWeaver. The inputs to the algorithm consist of an image given as an array of
pixel intensities and subgrid and spot counts along the x and y axes of the image. The algorithm
returns patch information and spot intensities for each spot in the image. Four algorithms are
invoked in this main algorithm, and they correspond to the different phases described in Section
1. We describe in more detail phase 2 (Algorithm FindRegions, line 2) and phase 3 (Algorithm
FindPatches, lines 6–7), in this section.

Finding Subgrid Region Coordinates

Algorithm FindRegions in Figure 4 describes how region coordinates for each subgrid are
obtained. The algorithm assumes that horizontal and vertical spot periods have been computed
and uses these periods together with spot parameters to compute region coordinates. Margins

4

GridWeave(Pix, height, width, numsubx, numsuby, numspotx, numspoty)

INPUT: Pix: a two-dimensional array of pixels of an image
height: height of the image
width: width of the image
numsuby: number of subgrids along the y-axis
numsubx: number of subgrids along the x-axis
numspoty: number of spots for each subgrid column
numspotx: number of spots for each subgrid row

OUTPUT: Patch information and spot intensities for each spot in the image

1 rowperiod, colperiod← GetPeriods(Pix, height, width)
2 regions← FindRegions(Pix, height, width, numsubx, numsuby, rowperiod, colperiod)
3 for subrow ← 1 to numsuby
4 do for subcol← 1 to numsubx
5 do allpatches[subrow, subcol]←
6 FindPatches(Pix, regions[subrow, subcol], rowperiod, colperiod,
7 numspoty, numspotx)
8 allintensities[subrow, subcol]←
9 ComputeIntensities(allpatches[subrow, subcol])
10
11 return allpatches, allintensities

Figure 3: Algorithm GridWeave

along all four sides of the image are first obtained (lines 1–5). Since the subgrids are evenly
spaced, region coordinates are easily determined from these margins (lines 7–15).

Algorithm GetLeftMargin in Figure 5 demonstrates how a margin is obtained. Similar
algorithms for GetRightMargin, GetTopMargin, and GetBottomMargin apply. The
algorithm uses a while loop (lines 3–16) that tries candidate left margins spaced colperiod apart
beginning with coordinate 1. For each candidate margin, pixel intensity sums are computed on
each row along the area between the left edge of the image and the candidate margin (lines 5–7).
The FFT is then computed on these row sums and the frequency with the maximum amplitude
is obtained (lines 8–11). For a left margin, the area would not contain spots, so running an
FFT on row sums along the area should not yield the expected spot period. Once a candidate
margin yields the expected (row) spot period, this indicates that the margin has been crossed
(lines 12–15). The value returned is the candidate margin minus one (column) spot period, to
allow for slack (lines 17–18).

Finding Patches

Algorithm FindPatches, shown in Figure 6, determines subgrid coordinates in a region as
follows. The width and height of a subgrid is first computed using period and spot count
values (lines 1–2). Left and top margins within the subgrid region are then obtained (lines 4–8).
Corresponding right and bottom margins need not be computed since the subgrid dimensions
are already available. Patch coordinates are then determined from the margins (lines 10–16).

Margin computation on the subgrid region level is demonstrated in Algorithm GetBest-

ColumnWindow, shown in Figure 7. Since the subgrid size is known, candidate intervals or
windows within the region instead of margins are tested. The algorithm takes, as input, column
sums of a given region. Intervals on the array of column sums are sampled (line 4) and a score is

5

FindRegions(Pix, height, width, numsubx, numsuby, rowperiod, colperiod)

INPUT: Pix: a two-dimensional array of pixels of an image
height: height of the image
width: width of the image
numsuby: number of subgrids along the y-axis
numsubx: number of subgrids along the x-axis
rowperiod: vertical distance between adjacent spots
colperiod: horizontal distance between adjacent spots

OUTPUT: Rectangle coordinates on Pix for each subgrid region

1 ⊲ determine margins in the image
2 leftmargin← GetLeftMargin(Pix, 1, width, 1, height, rowperiod, colperiod)
3 rightmargin← GetRightMargin(Pix, 1, width, 1, height, rowperiod, colperiod)
4 topmargin← GetTopMargin(Pix, 1, width, 1, height, rowperiod, colperiod)
5 bottommargin← GetBottomMargin(Pix, 1, width, 1, height, rowperiod, colperiod)
6
7 ⊲ compute regions, a two-dimensional array of rectangle coordinates
8 regionheight← (bottommargin− topmargin)/numsuby
9 regionwidth← (rightmargin− leftmargin)/numsubx
10 for subrow ← 1 to numsuby
11 do for subcol← 1 to numsubx
12 do regions[subrow, subcol].left← leftmargin + (subcol − 1) ∗ regionwidth
13 regions[subrow, subcol].width← regionwidth
14 regions[subrow, subcol].top← topmargin + (subrow − 1) ∗ regionheight
15 regions[subrow, subcol].height← regionheight
16
17 return regions

Figure 4: Algorithm FindRegions

6

GetLeftMargin(Pix, height, width, rowperiod, colperiod)

INPUT: Pix: a two-dimensional array of pixels of an image
height: height of the image
width: width of the image
rowperiod: vertical distance between adjacent spots in the image
colperiod: horizontal distance between adjacent spots in the image

OUTPUT: The distance between the left edge of the image and
the edge of the subgrid(s) closest to the image edge.

1 i← 1
2 foundedge← false
3 while (not foundedge)
4 do margin← i ∗ colperiod ⊲ candidate margins are colperiod apart
5 ⊲ compute row intensity sums along the area between
6 the image edge and the margin
7 rowsums← GetRowSums(Pix, 1, height, 1, margin)
8 ⊲ compute the FFT of the row intensity sums
9 and obtain the frequency with maximum coefficient
10 coeffs← FFT (rowsums)
11 maxfreq ← frequency with maximum coefficient in coeffs
12 ⊲ if the frequency matches the expected spot row frequency,
13 then the desired margin has been crossed
14 if (maxfreq = height/rowperiod)
15 foundedge← true
16 i← i + 1
17 margin← margin− colperiod ⊲ move back margin by colperiod for slack
18 return margin

Figure 5: Algorithm GetLeftMargin

7

FindPatches(Pix, region, rowperiod, colperiod, numspoty, numspotx)

INPUT: Pix: a two-dimensional array of pixels of an image
region: rectangular coordinates of subgrid region
rowperiod: vertical distance between adjacent spots
colperiod: horizontal distance between adjacent spots
numspoty: number of spots for each subgrid column
numspotx: number of spots for each subgrid row

OUTPUT: The leftmost pixel position where the grid begins

1 subgridheight← rowperiod ∗ numspoty
2 subgridwidth← colperiod ∗ numspotx
3
4 ⊲ compute left and top margins in subgrid region
5 colsums← GetColumnSums(Pix, region.top, region.height, region.left, region.width)
6 leftmargin← GetBestColumnWindow (colsums, region.width, subgridwidth, colperiod)
7 rowsums← GetRowSums(Pix, region.top, region.height, region.left, region.width)
8 topmargin← GetBestRowWindow (rowsums, region.height, subgridheight, rowperiod)
9
10 ⊲ compute patches, a two-dimensional array of rectangle coordinates
11 for x← 1 to numspotx
12 do for y ← 1 to numspoty
13 do patches[i, j].top← region.top + topmargin + (j − 1) ∗ rowperiod
14 patches[i, j].height← rowperiod
15 patches[i, j].left← region.left + leftmargin + (i− 1) ∗ colperiod
16 patches[i, j].width← colperiod
17
18 return patches

Figure 6: Algorithm FindPatches

8

GetBestColumnWindow(colsums, width, subgridwidth, colperiod)

INPUT: colsums: pixel itensity sums for each column
width: size of colsums array
subgridwidth: width of a subgrid
colperiod: horizontal distance between adjacent spots in the image

OUTPUT: The leftmost pixel position where the subgrid begins

1 bestscore← undefined
2 bestposition← undefined
3 for i← 1 to (width− subgridwidth)
4 do window ← colsums[i . . . (i + subgridwidth− 1)] ⊲ extract candidate window
5 score← getscore(window)
6 ⊲ getscore returns either the sum of pixel sums or
7 the FFT frequency coefficient in window
8 if (score > bestscore)
9 then bestscore← score
10 bestposition← i
11 return bestposition

Figure 7: Algorithm GetBestColumnWindow

obtained for each interval (line 5–6). The interval that yields the highest score is returned (lines
7–10).

The program uses two interval scoring methods. The first method involves adding all sums
in the interval. Intuitively, the interval where the spots are located should contain the pixels
with relatively higher intensities. The second method computes the FFT along the interval,
since the interval that contains the spots ought to yield the highest coefficients for the expected
spot frequency. Particularly since the first method would be susceptible to significant noise, the
second method serves to validate the first method.

4 Implementation

The program is written in C, and has been compiled using gcc version 3.2.2 running on Red
Hat Linux 3.2.2-5. It uses the GNU/Linux tiff library package for TIFF image file processing
and the fftw3 library package [15] for FFT computation.

The program is invoked using the following format:

grweave tiff(s) -gx m -gy n -sx s -sy t -showgrid jpgname -output txtname

where tiff(s) specify the name(s) of the tiff image file(s) to be processed by the program. The
arguments m and n describe the number of subgrids along the x-axis and y-axis, respectively, while
s and t describe the number of spots in a row and column of a subgrid, respectively. An image
file (named jpgname) may be produced that overlays the grid on the original image file(s), from
which the user may visually verify whether the subgrids and the spots were correctly located.
The intensity results are stored in the file named txtname in tab-delimited format, containing
the following values, per spot, per image:

• Spot Index Information: subgrid row, subgrid column, spot row, and spot column

9

Image Number Correct Fair Poor

Quality of Images

Clean 8 8 (100%) 0 (0%) 0 (0%)
Noisy 18 12 (67%) 4 (22%) 2 (11%)

Total 26 20 (77%) 4 (15%) 2 (8%)

Figure 8: Gridding Results.

• Spot Location Information: x and y coordinates of the upperleft corner of the patch, width
and height of the patch, x and y coordinates of the spot center, and the diameter of the
spot

• Foreground Intensity Values: mean, median, standard deviation, minimum, and maximum

• Background Intensity Values: mean, median, standard deviation, minimum, and maximum

When multiple images are indicated, grid computation is performed on an aggregate of the
images (sums of pixel intensities are computed for each coordinate across the images). The
program also includes options that the user may indicate at the end of the command line:

-usefilter When this option is included, high and low intensity values in the image(s) are
filtered out before grid computation is carried out (note that the filtered image is used for
gridding only, not for intensity computation). By default, gridding is carried out on the
raw image(s).

-adjustcenter When this option is included, centers are computed on a per-spot basis based
on the relative intensities present in a patch. By default, centers are assumed to be the
patch centers.

-fixedradius By default, the program computes a radius for each spot, depending on the
relative intensities present in the patch. This option assumes a fixed radius for all spots,
determined by calculating the mean of all computed radii.

5 Discussion and Conclusion

The program was tested against sample microarray images. Thirteen pairs of images were
selected and categorized as either clean (4 image pairs) or noisy (9 image pairs). The types of
noise in the noisy images ranged from arbitrary streaks and smudges on different areas on the
image to noise that appeared uniformly distributed along the image.

All of the test images had 32 = 8 × 4 subgrids and each subgrid contained 288 = 12 × 24
spots. We first executed the program on each of the 26 images, and then on the image pairs to
determine if obtaining an aggregate of the pairs improved the gridding. The -showgrid option
was used and the resulting image was visually inspected to verify whether the subgrids were
located correctly.

Table 8 presents the results of the tests. The results fall into three categories: correct if all 32
subgrids were correctly located, fair if at least 50% of the subgrids were correctly located, and
poor if less than 50% of the subgrids were correctly located. As the table shows, the program
produced correct results for all of the clean images. For noisy images, only 2 out of the 18
images were gridded poorly. Overall, 77% of the test images, both clean and noisy, were gridded
correctly. In addition, when the program was executed on pairs of images, some incremental
improvements were observed for the images that were gridded poorly.

10

It was observed that whenever the program failed in gridding the images, the images contained
significant noise and spot intensities were relatively low. These characteristics, coupled with
the fact that the test images had subgrids that were very close to each other along the x-axis
(approximately 18 pixels—roughly one spot period—between adjacent grids), reduce the chances
of successful margin detection.

The program has also been tested on other datasets and the results are favorable particularly
when there is enough vertical and horizontal distance between adjacent subgrids. We also note
that for the cases where the subgrids are not correctly located, region coordinates are off always
by a multiple of the spot period. This indicates that the spot coordinates of the actual spots
detected by the program remain accurate, even in such cases.

References

[1] J. Angulo and J. Serra, Automatic analysis of DNA microarray images using mathe-

matical morphology, Bioinformatics, 19 (2003), pp. 553–562.

[2] P. Bajcsy, Gridline: Automatic grid alignment in dna microarray scans, IEEE Trans.
Image Process., 13 (2004), pp. 15–25.

[3] T. Bergemann, R. Laws, F. Quiaoit, and L. Zhao, A statistically driven approach for

image segmentation and signal extraction in cdna microarrays, J. Comput. Biol., 11 (2004),
pp. 695–713.

[4] N. Brandle, H. Bischof, and H. Lapp, Robust dna microarray image analysis, Mach.
Vis. Appl., 15 (2003), pp. 11–28.

[5] J. Buhler, T. Ideker, and D. Haynor, Dapple: Improved techniques for finding spots

on DNA microarrays, Tech. Rep. UWTR 2000-08-05, Department of Computer Science and
Engineering, University of Washington, 2000.

[6] A. J. Carlisle, V. V. Prabhu, A. Elkahloun, J. Hudson, J. M. Trent, W. M.

Linehan, E. D. Williams, M. Emmert-Buck, L. A. Liotta, P. J. Munson, and

D. B. Krizman, Development of a prostate cDNA microarray and statistical gene expres-

sion analysis package, Molecular Carcinogenesis, 28 (2000), pp. 12–22.

[7] Y. Chen, E. R. Dougherty, and M. L. Bittner, Ratio-based decisions and the quanti-

tative analysis of cDNA microarray images, Journal of Biomedical Ethics, 2 (1997), pp. 364–
374.

[8] J. Cooley and J. Tukey, An algorithm for the machine calculation of complex fourier

series, Mathematics of Computation, 19 (1965), pp. 297–301.

[9] R. Dell’Anna, F. Demichelis, M. Barbareschi, and A. Sboner, An automated

procedure to properly handle digital images in large scale tissue microarray experiments,
Comput. Meth. Programs Biomed., 79 (2005), pp. 197–208.

[10] O. Demirkaya, M. H. Asyali, and M. M. Shoukri, Segmentation of cdna microarray

spots using markov random field modeling, Bioinformatics, 21 (2005), pp. 2994–3000.

[11] S. Dudoit, R. C. Gentleman, and J. Quackenbush, Open source software for the

analysis of microarray data, BioTechniques, 34 (2003), pp. S45–S51.

[12] P. I. Echevarria, J. C. Punzalan, and J. P. C. Vergara, Microarray image analysis

program, Loyola Schools Review, 2 (2003), pp. 1–14.

11

[13] M. Eisen, Scanalyze users manual. Available from http://rana.lbl.gov/index.htm,
1999.

[14] M. B. Eisen and P. O. Brown, DNA arrays for analysis of gene expression, Methods in
Enzymology, 303 (1999), pp. 179–205.

[15] M. Frigo and S. G. Johnson, FFTW: An adaptive software architecture for the FFT,
in Proceedings of the 1998 IEEE International Conference on Acoustics Speech and Signal
Processing, vol. 3, IEEE, 1998, pp. 1381–1384.

[16] V. L. Galinsky, Automatic registration of microarray images. i. rectangular grid, Bioin-
formatics, 19 (2003), pp. 1824–1831.

[17] , Automatic registration of microarray images. ii. hexagonal grid, Bioinformatics, 19
(2003), pp. 1832–1836.

[18] L. S. Heath, N. Ramakrishnan, R. R. Sederoff, R. W. Whetten, B. I. Chevone,

C. A. Struble, V. Y. Jouenne, D. Chen, L. M. Zyl, and R. Grene, Studying

the functional genomics of stress responses in loblolly pine using the Expresso microarray

management system, Comparative and Functional Genomics, 3 (2002), pp. 226–243.

[19] R. Hirata Jr, J. Barrera, R. F. Hashimoto, and D. O. Dantas, Microarray grid-

ding by mathematical morphology, in Proceedings of SIGRAPI, International Symposium
on Computer Graphics, Image Processing, and Vision, 2001, pp. 112–119.

[20] J. Ho, W. Hwang, H. Lu, and D. Lee, Gridding spot centers of smoothly distorted

microarray images, IEEE Trans. Image Process., 15 (2006), pp. 342–353.

[21] A. N. Jain, T. A. Tokuyasu, A. M. Snijders, R. Segraves, D. G. Albertson, and

D. Pinkel, Fully automatic quantification of microarray image data, Genome Research, 12
(2002), pp. 325–332.

[22] H.-Y. Jung and H.-G. Cho, An automatic block and spot indexing with k-nearest neigh-

bors graph for microarray image analysis, Bioinformatics, 18 (2002), pp. S141–S151.

[23] M. Katzer, F. Kummert, and G. Sagerer, Robust automatic microarray image anal-

ysis, in Proceedings of the International Conference on Bioinformatics: North-South Net-
working, Bangkok, 2002, p. 12.

[24] M. Katzer, F. Kummert, and G. Sagerer, Methods for automatic microarray image

segmentation, IEEE Trans. Nanobiosci., 2 (2003), pp. 202–214.

[25] N. Lawrence, M. Milo, M. Niranjan, P. Rashbass, and S. Soullier, Reducing the

variability in cdna microarray image processing by bayesian inference, Bioinformatics, 20
(2004), pp. 518–526.

[26] A. Liew, H. Yan, and M. Yang, Robust adaptive spot segmentation of dna microarray

images, Pattern Recognit., 36 (2003), pp. 1251–1254.

[27] L. Rueda and V. Vidyadharan, A hill-climbing approach for automatic gridding of cdna

microarray images, IEEE-ACM Trans. Comput. Biol. Bioinform., 3 (2006), pp. 72–83.

[28] A. I. Saeed, V. Sharov, J. White, W. Liang, N. Bhagabati, J. Braisted,

M. Klapa, T. Currier, M. Thiagarajan, A. Sturn, M. Stuffin, A. Rezantsev,

D. Popov, A. Ryltsov, E. Kostukovich, I. Borisovsky, Z. Liu, A. Vinsavich,

V. Trush, and J. Quackenbush, TM4: A free, open-source system for microarray data

management and analysis, BioTechniques, 34 (2003), pp. 374–378.

12

[29] A. Sioson, J. I. Watkinson, C. Vasquez-Robinet, M. Ellis, M. Shukla, D. Kumar,

N. Ramakrishnan, L. S. Heath, R. Grene, B. I. Chevone, K. Kafadar, and L. T.

Watson, Expresso and chips: Creating a next generation microarray experiment manage-

ment system, in Proceedings of the Next Generation Software Systems Workshop, 17th
International Parallel and Distributed Processing Symposium (IPDPS’03), Nice, France,
2003, p. 209.

[30] M. Steinfath, W. Wruck, H. Seidel, H. Lehrach, U. Radelof, and J. O’Brien,
Automated image analysis for array hybridization experiments, Bioinformatics, 17 (2001),
pp. 634–641.

[31] X. Wang, S. Ghosh, and S. Guo, Quantitative quality control in microarray image

processing and data acquisition, Nucleic Acids Research, 19 (2003), pp. 553–562.

13

