47 research outputs found

    Characterizing TPS Microstructure: A Review of Some techniques

    Get PDF
    I. When seeking to understand ablator microstructure and morphology there are several useful techniques A. SEM 1) Visual characteriza3on at various length scales. 2) Chemical mapping by backscatter or x-ray highlights areas of interest. 3) Combined with other techniques (density, weight change, chemical analysis) SEM is a powerful tool to aid in explaining thermo/structural data. B. ASAP. 1) Chemical characteriza3on at various length scales. 2) Chemical mapping of pore structure by gas adsorption. 3) Provides a map of pore size vs. pore volume. 4) Provided surface area of exposed TPS. II. Both methods help characterize and understand how ablators react with other chemical species and provides insight into how they oxidize

    Glutamine treatment attenuates hyperglycemia-induced mitochondrial stress and apoptosis in umbilical vein endothelial cells

    Get PDF
    OBJECTIVE: The aim of this study was to determine the in vitro effect of glutamine and insulin on apoptosis, mitochondrial membrane potential, cell permeability, and inflammatory cytokines in hyperglycemic umbilical vein endothelial cells. MATERIALS AND METHODS: Human umbilical vein endothelial cells were grown and subjected to glutamine and insulin to examine the effects of these agents on the hyperglycemic state. Mitochondrial function and the production of inflammatory cytokines were assessed using fluorescence analysis and multiple cytotoxicity assays. Apoptosis was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. RESULTS: Glutamine maintains the integrity of the mitochondria by reducing the cell permeability and cytochrome c levels and increasing the mitochondrial membrane potential. The cytochrome c level was significantly (

    The stress-responsive Hsp90 chaperone is required for the production of the genotoxin colibactin and the siderophore yersiniabactin by Escherichia coli

    Get PDF
    The genotoxin colibactin synthesized by Escherichia coli is a secondary metabolite belonging to the chemical family of hybrid polyketide/non-ribosomal peptide compounds. It is produced by a complex biosynthetic assembly line encoded by the pks pathogenicity island. The presence of this large cluster of genes in the E. coli genome is invariably associated with the High-Pathogenicity Island, encoding the siderophore yersiniabactin that belongs to the same chemical family as colibactin. The E. coli heat shock protein HtpG (Hsp90Ec) is the bacterial homolog of the eukaryotic molecular chaperone Hsp90 involved in the protection of cellular proteins against a variety of environmental stresses. In contrast to the eukaryotic Hsp90, the functions and client proteins of Hsp90Ec are poorly known. Here, we demonstrated that production of colibactin and yersiniabactin is abolished in the absence of Hsp90Ec We further characterized an interplay between the Hsp90Ec molecular chaperone and the ClpQ protease involved in colibactin and yersiniabactin synthesis. Finally, we demonstrated that Hsp90Ec is required for the full in vivo virulence of extraintestinal pathogenic E. coli This is the first report highlighting the role of heat shock protein Hps90Ec in the production of two secondary metabolites involved in E. coli virulence

    Travel Writing and Rivers

    Get PDF

    Modulation atypique de la biosynthèse de la colibactine, une génotoxine de Escherichia coli, ou comment un îlot génomique est en symbiose avec le chromosome bactérien

    Get PDF
    The pks genomic island codes a complex biosynthetic assembly line that synthetizes the colibactin, a genotoxin produced by some strains of Escherichia coli. This genotoxin generates DNA double-strand breaks in eukaryotic cells both in vitro and in vivo. Colibactin is not a protein, but a secondary metabolite belonging to the chemical family of hybrid polyketide/nonribosomal peptide compounds. Preliminary results from our research team suggested that certain genes of the E. coli core genome (i.e. genes present in all strains of the species) could also be involved in the colibactin production. The main goal of this thesis was to identify non-essential E. coli genes located outside the pks island that are required for colibactin biosynthesis, with the screening of a transposon mutant library. This revealed 29 potential candidate genes, but the project focused specifically on two groups of genes: three genes encoding chaperone proteins, and three genes encoding enzymes involved in polyamines metabolism. The first project highlighted the role of the molecular chaperone HtpG (or Hsp90Ec), the bacterial homolog of eukaryotic heat shock protein 90, in the production of colibactin, but also yersiniabactin, a siderophore (i.e. a bacterial iron uptake system) that belongs to the same chemical family as colibactin. Furthermore, the ClpQ protease was involved in colibactin and yersiniabactin production in combination with Hsp90Ec. These results confirmed the interplay between the biosynthesis of two E. coli virulence factors, colibactin and yersiniabactin. Finally, analysis of the effects of htpG disruption during systemic infection in animals, using rodent models of sepsis and neonatal meningitis, demonstrated the role of the stress-responsive molecular chaperone Hsp90Ec in E. coli virulence. The second project revealed the involvement of polyamines in the biosynthesis of colibactin. A molecular microbiology approach demonstrated that spermidine was the polyamine required for colibactin production. Preliminary results suggested that spermidine could regulate the expression of some pks island genes, and therefore could modulate colibactin production. Further experiments are in progress to elucidate the molecular mechanisms involved in this regulation. Together, the results of this thesis perfectly illustrate the symbiotic integration of a mobile genetic element acquired during evolution into the bacterial chromosome, through several crosstalks allowing the production of virulence factors in E. coli.L'îlot génomique pks code une machinerie de biosynthèse complexe synthétisant la colibactine, une génotoxine produite par certaines souches de Escherichia coli. Cette génotoxine induit des cassures double-brin de l'ADN sur les cellules eucaryotes in vitro et in vivo. La colibactine n'est pas une protéine, mais un métabolite secondaire de type polycétide/peptide non-ribosomal (PK/NRP). Des résultats préliminaires de l'équipe semblaient indiquer que certains gènes du core genome de E. coli seraient également impliqués dans la production de la colibactine. L'objectif de cette thèse était d'identifier les gènes non-essentiels de E. coli situés hors de l'îlot génomique pks impliqués dans la synthèse de colibactine, en construisant une banque de mutants par insertion de transposons. Ce criblage a permis d'identifier 29 gènes candidats, mais deux groupes de gènes ont été particulièrement étudiés dans la suite du projet : trois gènes codants des protéines chaperons, et trois gènes codant des enzymes impliquées dans le métabolisme des polyamines. Le premier projet a permis de montrer que la protéine chaperon HtpG (ou Hsp90Ec), homologue bactérien de la protéine de choc thermique eucaryote Hsp90, est requise pour la production de colibactine, mais aussi de yersiniabactine, un sidérophore (ou système bactérien de captation du fer) appartenant à la même famille chimique que la colibactine. De plus, la protéase ClpQ intervient de concert avec Hsp90Ec dans la production de colibactine et de yersiniabactine. Ces résultats confirment ainsi l'interconnexion entre la synthèse des deux facteurs de virulence de E. coli, la colibactine et la yersiniabactine. Enfin, l'analyse des effets de la mutation du gène htpG au cours d'une infection systémique chez l'animal, dans des modèles de sepsis et de méningite néonatale chez les rongeurs, démontre le rôle de la protéine de réponse au stress Hsp90Ec dans la virulence de E. coli. Le second projet a révélé que les polyamines sont impliquées dans la production de colibactine. L'étude du métabolisme des polyamines par une approche de microbiologie moléculaire a démontré que la spermidine est la polyamine nécessaire à la production de colibactine. Les résultats préliminaires de ce projet indiquent que la spermidine participerait à la régulation de l'expression de certains gènes de l'îlot génomique pks, et de fait modulerait la biosynthèse de colibactine. Des études complémentaires sont en cours pour élucider les mécanismes impliqués. Les résultats de cette thèse sont une illustration parfaite de l'intégration symbiotique d'un élément génétique mobile acquis au cours de l'évolution au sein du chromosome bactérien, grâce à plusieurs connexions bilatérales permettant la production de facteurs de virulence par E. coli

    Atypical modulation of the biosynthesis of colibactin, a genotoxin from Escherichia coli, or how a genomic island is symbiotic with the bacterial chromosome

    No full text
    L'îlot génomique pks code une machinerie de biosynthèse complexe synthétisant la colibactine, une génotoxine produite par certaines souches de Escherichia coli. Cette génotoxine induit des cassures double-brin de l'ADN sur les cellules eucaryotes in vitro et in vivo. La colibactine n'est pas une protéine, mais un métabolite secondaire de type polycétide/peptide non-ribosomal (PK/NRP). Des résultats préliminaires de l'équipe semblaient indiquer que certains gènes du core genome de E. coli seraient également impliqués dans la production de la colibactine. L'objectif de cette thèse était d'identifier les gènes non-essentiels de E. coli situés hors de l'îlot génomique pks impliqués dans la synthèse de colibactine, en construisant une banque de mutants par insertion de transposons. Ce criblage a permis d'identifier 29 gènes candidats, mais deux groupes de gènes ont été particulièrement étudiés dans la suite du projet : trois gènes codants des protéines chaperons, et trois gènes codant des enzymes impliquées dans le métabolisme des polyamines. Le premier projet a permis de montrer que la protéine chaperon HtpG (ou Hsp90Ec), homologue bactérien de la protéine de choc thermique eucaryote Hsp90, est requise pour la production de colibactine, mais aussi de yersiniabactine, un sidérophore (ou système bactérien de captation du fer) appartenant à la même famille chimique que la colibactine. De plus, la protéase ClpQ intervient de concert avec Hsp90Ec dans la production de colibactine et de yersiniabactine. Ces résultats confirment ainsi l'interconnexion entre la synthèse des deux facteurs de virulence de E. coli, la colibactine et la yersiniabactine. Enfin, l'analyse des effets de la mutation du gène htpG au cours d'une infection systémique chez l'animal, dans des modèles de sepsis et de méningite néonatale chez les rongeurs, démontre le rôle de la protéine de réponse au stress Hsp90Ec dans la virulence de E. coli. Le second projet a révélé que les polyamines sont impliquées dans la production de colibactine. L'étude du métabolisme des polyamines par une approche de microbiologie moléculaire a démontré que la spermidine est la polyamine nécessaire à la production de colibactine. Les résultats préliminaires de ce projet indiquent que la spermidine participerait à la régulation de l'expression de certains gènes de l'îlot génomique pks, et de fait modulerait la biosynthèse de colibactine. Des études complémentaires sont en cours pour élucider les mécanismes impliqués. Les résultats de cette thèse sont une illustration parfaite de l'intégration symbiotique d'un élément génétique mobile acquis au cours de l'évolution au sein du chromosome bactérien, grâce à plusieurs connexions bilatérales permettant la production de facteurs de virulence par E. coli.The pks genomic island codes a complex biosynthetic assembly line that synthetizes the colibactin, a genotoxin produced by some strains of Escherichia coli. This genotoxin generates DNA double-strand breaks in eukaryotic cells both in vitro and in vivo. Colibactin is not a protein, but a secondary metabolite belonging to the chemical family of hybrid polyketide/nonribosomal peptide compounds. Preliminary results from our research team suggested that certain genes of the E. coli core genome (i.e. genes present in all strains of the species) could also be involved in the colibactin production. The main goal of this thesis was to identify non-essential E. coli genes located outside the pks island that are required for colibactin biosynthesis, with the screening of a transposon mutant library. This revealed 29 potential candidate genes, but the project focused specifically on two groups of genes: three genes encoding chaperone proteins, and three genes encoding enzymes involved in polyamines metabolism. The first project highlighted the role of the molecular chaperone HtpG (or Hsp90Ec), the bacterial homolog of eukaryotic heat shock protein 90, in the production of colibactin, but also yersiniabactin, a siderophore (i.e. a bacterial iron uptake system) that belongs to the same chemical family as colibactin. Furthermore, the ClpQ protease was involved in colibactin and yersiniabactin production in combination with Hsp90Ec. These results confirmed the interplay between the biosynthesis of two E. coli virulence factors, colibactin and yersiniabactin. Finally, analysis of the effects of htpG disruption during systemic infection in animals, using rodent models of sepsis and neonatal meningitis, demonstrated the role of the stress-responsive molecular chaperone Hsp90Ec in E. coli virulence. The second project revealed the involvement of polyamines in the biosynthesis of colibactin. A molecular microbiology approach demonstrated that spermidine was the polyamine required for colibactin production. Preliminary results suggested that spermidine could regulate the expression of some pks island genes, and therefore could modulate colibactin production. Further experiments are in progress to elucidate the molecular mechanisms involved in this regulation. Together, the results of this thesis perfectly illustrate the symbiotic integration of a mobile genetic element acquired during evolution into the bacterial chromosome, through several crosstalks allowing the production of virulence factors in E. coli

    Factores psicol\uf3gicos y compromiso deportivo en jugadores de tenis y p\ue1del /

    No full text
    Trabajo Fin de Grado-Universidad Pontificia de Salamanca, Facultad de Educaci\uf3n, 2021En esta investigaci\uf3n se han tratado los diferentes factores psicol\uf3gicos que influyen en el rendimiento deportivo, as\ued como el compromiso actual y futuro de deportistas federados en tenis y/o p\ue1del sin l\uedmites de edad. La muestra ha estado compuesta por 33 deportistas de los cuales son 20 hombres y 13 mujeres. Se han utilizado como instrumentos de evaluaci\uf3n el cuestionario de Caracter\uedsticas Psicol\uf3gicas Relacionadas con el Rendimiento Deportivo (CPRD) y la Escala de Grado de Compromiso hacia el Deporte (EGCD). En cuanto a los resultados obtenidos se concluye que las mujeres tienen un mayor compromiso actual y futuro con sus deportes que los hombres y que los deportistas que practican tenis tienen niveles menores en todos los factores psicol\uf3gicos exceptuando la habilidad mental

    Editorial

    No full text
    corecore