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ABSTRACT (195 words) 

The genotoxin colibactin synthesized by Escherichia coli is a secondary metabolite belonging to 

the chemical family of hybrid polyketide/non-ribosomal peptide compounds. It is produced by a 

complex biosynthetic assembly line encoded by the pks pathogenicity island. The presence of this 

large cluster of genes in the E. coli genome is invariably associated with the High-Pathogenicity 

Island, encoding the siderophore yersiniabactin that belongs to the same chemical family as 

colibactin. The E. coli heat shock protein HtpG (Hsp90Ec) is the bacterial homolog of the eukaryotic 

molecular chaperone Hsp90 involved in the protection of cellular proteins against a variety of 

environmental stresses. In contrast to the eukaryotic Hsp90, the functions and client proteins of 

Hsp90Ec are poorly known. Here, we demonstrated that production of colibactin and yersiniabactin 

is abolished in the absence of Hsp90Ec. We further characterized an interplay between the Hsp90Ec 

molecular chaperone and the ClpQ protease involved in colibactin and yersiniabactin synthesis. 

Finally, we demonstrated that Hsp90Ec is required for the full in vivo virulence of extraintestinal 

pathogenic E. coli. This is the first report highlighting the role of heat shock protein Hps90Ec in the 

production of two secondary metabolites involved in E. coli virulence. 
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INTRODUCTION (3,335 words) 

Escherichia coli is both a commensal inhabitant of the human gastrointestinal tract and a 

pathogen associated with a wide range of infections. Certain pathogenic E. coli strains, i.e. 

Extraintestinal Pathogenic E. coli (ExPEC), display an enhanced capacity to cause infection outside 

the intestinal tract. These strains harbor numerous virulence factors encoded by mobile genetic 

elements, such as plasmids, transposons, phages or pathogenicity islands [1]. 

We previously revealed the presence in the E. coli genome of a 54 kb gene cluster, the pks 

genomic island [2]. This highly conserved pathogenicity island is predominately found in E. coli 

strains of the phylogenetic group B2 and in some other pathogenic species of Enterobacteriaceae, 

such as Citrobacter koseri, Klebsiella pneumoniae or Enterobacter aerogenes [2,3]. The pks island 

carries genes clbA to clbS, and encodes modular non-ribosomal peptide synthetases (NRPSs), 

polyketide synthases (PKSs) and accessory enzymes. This complex biosynthetic machinery 

synthesizes a microbial secondary metabolite, the genotoxin colibactin, which is a hybrid 

polyketide/non-ribosomal peptide (PK-NRP) compound. Colibactin was demonstrated to generate 

DNA double strand breaks in eukaryotic cells both in vitro and in vivo [2–5]. This DNA damage 

leads to mutations, chromosomal instability and premature senescence that could ultimately drive 

tumorigenesis [4,6,7]. E. coli strains also synthesize other PK-NRP secondary metabolites, 

including the siderophores enterobactin, salmochelins and yersiniabactin. Siderophores are low 

molecular weight compounds that facilitate iron uptake by bacteria, and are virulence factors [8]. 

We recently described a crosstalk between the biosynthesis of the PK-NRP secondary metabolites 

colibactin and siderophores [9]. Our recent studies have also demonstrated the importance of the 

interplay between colibactin and siderophores in the virulence of ExPEC in rodent models of sepsis 

and neonatal meningitis [5,9,10]. 

Entry of a pathogen into a warm-blooded host is usually accompanied by a temperature upshift. 

In bacteria, such change triggers a global stress response, named the heat shock response, which is 

orchestrated by heat shock proteins (HSPs) [11]. HSPs include highly conserved molecular 
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chaperones, proteases, transcription factors and key metabolic enzymes that facilitate adaptation 

and survival in response to exogenous stressors [12]. Heat shock genes are also induced at later 

stages of infection, reflecting their role in the protection of the bacterium against a variety of other 

stresses and host defense mechanisms, such as oxidative stress, low pH, defensins or bactericidal 

serum activity [13]. These processes are essential for the survival of the pathogen within the host.  

Molecular chaperones are ubiquitous and highly conserved proteins that maintain intracellular 

protein homeostasis. They assist folding, translocation, quality control, targeting to proteases, 

assembly and disassembly of protein complexes [14,15]. One of these chaperones, the High 

temperature protein G (HtpG), is the bacterial homolog of the eukaryotic Heat shock protein 90 

(Hsp90). The Hsp90 machinery is involved in diverse cellular processes including protein folding or 

repairing and signal transduction [16,17], and has been demonstrated as a key therapeutic target in 

cancers or neurodegenerative diseases [18,19]. However, in contrast to the essential nature of 

eukaryotic Hsp90, deletion of the htpG gene is not lethal to bacterial cells, but results in impaired 

growth at high temperatures [20,21]. Furthermore, cellular functions and client proteins of the 

Hsp90 bacterial homolog remain enigmatic, despite its high conservation among bacteria and high 

abundance in the cell [22,23]. In this work, we demonstrate that the E. coli molecular chaperone 

HtpG, thereafter called Hsp90Ec, is required for the synthesis of both colibactin and yersiniabactin, 

and is involved in the extraintestinal virulence of E. coli. These results confirm the role of the stress 

response during infection, and indicate that bacterial Hsp90 should be considered a potential 

therapeutic target for antimicrobial treatments. 

 

MATERIAL AND METHODS 

N-myristoyl-D-asparagine (colibactin prodrug motif) quantification by liquid 

chromatography/mass spectrometry 

Strains were grown in DMEM medium at 37°C for 18 h (see Supplementary Methods for 

details). Supernatants of cultures were obtained following centrifugation of bacterial cells at 3,200  
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g for 15 min and were filtered on 0.2 μm membranes. Aliquots of 1 mL of supernatant were 

prepared. Each strain was cultured in triplicate (deriving from three independent clones) and each 

supernatant was analyzed by LC-MS/MS. 

Quantification experiments were conducted with ultra-performance liquid chromatography-high 

resolution/heated electrospray ionization mass spectrometry (UPLC-HR/HESI-MS). The data were 

recorded on a Thermo Scientific Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer 

coupled to a Dionex Ultimate 3000 UPLC. The following solvent gradient (A = H20 + 0.1% formic 

acid, B = acetonitrile + 0.1% formic acid with B at 30% from 0-1 min, 30-95% from 1-6 min and 

95% from 6-7 min at a flowrate of 0.5 mL/min) was used on a Phenomenex Kinetex 5µm EVO C18 

(50  2.1 mm) column at 30°C. The MS was operated in positive ionization mode at a scan range of 

200-500 m/z and a resolution of 35,000. The spray voltage was set to 3.5 kV, the S-lens to 35, the 

auxiliary gas heater temperature to 438°C and the capillary temperature to 270°C. Absolute 

quantification was achieved by using a Schotten-Baumann reaction-derived N-myristoyl-L-

asparagine (isomer of the N-myristoyl-D-asparagine colibactin cleavage product) as a standard. The 

standard curve was recorded with methanol-diluted concentrations of 10 ng/mL, 100 ng/mL, 500 

ng/mL, 1 µg/mL and 10 µg/mL from a 1 mg/mL methanol stock solution. Data were obtained from 

undiluted cell free sample supernatants and analyzed for N-myristoyl-D-asparagine and 

concentrations were calculated using Thermo Xcalibur 2.2 Quan Browser. 

 

Siderophores quantification by liquid chromatography/mass spectrometry 

Culture supernatants were obtained following centrifugation of bacterial cells at 3,200  g for 15 

min and were filtered on 0.2 μm membranes (see Supplementary Methods). Aliquots of 1 mL of 

supernatant were prepared, and 0.12 ng/mL of 5,6,7,8-tetradeutero-3,4-dihydroxy-2-heptylquinoline 

was added as an internal control. Each strain was cultured in triplicate and each culture supernatant 

was analyzed by LC-MS/MS.  

 at U
niversity C

ollege L
ondon on July 19, 2016

http://jid.oxfordjournals.org/
D

ow
nloaded from

 

http://jid.oxfordjournals.org/


Ac
ce

pte
d M

an
us

cri
pt

7 

Multiple-reaction-monitoring (MRM) analyses were performed using a Waters 2795 Alliance 

HT high-performance liquid chromatography (HPLC) system coupled to a Micromass Quattro 

Premier XE mass spectrometer (Micromass MS Technologies). Samples were injected onto a 

Phenomenex Kinetex 2,6u C8 100A by 150-mm column at a flow rate of 400 μL/min and with a 

linear gradient of water-acetonitrile with 1% acetic acid. The transition for yersiniabactin was m/z 

482 > 295. The specific transitions from pseudomolecular to daughter ions of salmochelins, 

enterobactin, and aerobactin are described elsewhere [24]. These transitions were used for relative 

quantification. 

 

Mouse sepsis model 

The procedure has been described in detail previously [5]. Briefly, nine-week-old female 

C57BL/6J mice (JANVIER) were injected into the footpad with 108 SP15 wild type and ΔhtpG 

mutant strains (see Supplementary Methods). 20 hours after injection, mice were treated with 100 

μL of 1 mg/mL gentamicin injected intraperitoneally, together with ringer solution injected 

subcutaneously (2  500 μL) for rehydration.  

 

Rat neonatal meningitis model 

The procedure has been described in detail previously [25]. Briefly, all members of a litter (n = 

12) of two-day-old (P2) Wistar rat pups (Harlan, United Kingdom) were fed 20 µL of mid-

logarithmic-phase E. coli bacteria (6  106 CFU) from an Eppendorf micropipette to induce 

gastrointestinal colonization (see Supplementary Methods). Disease progression was determined by 

daily evaluation of all rat pups for symptoms of systemic infection and scored on a scale of rising 

severity from 0 to 3. Pups scoring 3 were culled, and systemic infection was confirmed by 

quantifying E. coli K1 in blood samples on MacConkey agar and the expression of the K1 capsule 

confirmed by testing susceptibility of colonies to bacteriophage K1E. 
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Ethic statement 

Animal experiments were carried out in accordance with the European directive for the 

protection of animals used for scientific purposes. Mouse experiments were approved by the local 

ethic committee on animal experiment "Comité d'éthique pour la protection de l’animal de 

laboratoire Midi-Pyrénées (C2EA-22)" and were conduction under the referenced protocol 

MP/03/63/07/12. Rat experiments were approved by the Ethical Committee of the UCL School of 

Pharmacy and the United Kingdom Home Office (HO) and were conducted under the HO Project 

License PPL 70/7773. 

 

Statistical analysis 

Statistical analyses were conducted using GraphPad Prism 6.0c. The mean and the standard error 

of the mean (SEM) are shown in figures. p-values were calculated using unpaired t-test or one-way 

ANOVA test followed by a Bonferroni post-test. For in vivo experiments, survival curves were 

analyzed using log-rank test. A p-value of less than 0.05 was considered statistically significant and 

is denoted by *. p < 0.01 is denoted by ** and p < 0.001 by ***. Non-significant result is indicated 

ns. 

 

RESULTS 

The molecular chaperone Hsp90Ec is required for the genotoxicity of pks+ E. coli 

The pks island was initially identified as the genomic determinant for the synthesis of colibactin 

through the screening of a transposon mutant library [2]. Interestingly, screening of this library had 

revealed that several transposon mutants had insertions in the htpG gene, suggesting that htpG was 

potentially involved in colibactin biosynthesis (unpublished data). To investigate the impact of 

Hsp90Ec in colibactin production, a deletion of the htpG gene was constructed (see Supplementary 

Methods) in commensal and pathogenic pks+ E. coli strains M1/5 and SP15, respectively 

(Supplementary Table 1). The resulting ΔhtpG mutant strains were subsequently complemented 
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with the plasmid p-htpG harboring the htpG gene under the control of an IPTG-inducible promoter 

(Supplementary Table 1). The production of colibactin was measured in the mutant and 

complemented strains through bacteria-host cells interactions and subsequent quantification of 

megalocytosis (Figure 1A) and histone H2AX phosphorylation (Figure 1B), which correlate with 

DNA double strand breaks resulting from the genotoxic effect of colibactin [2,4]. 

The megalocytosis assay [2] and the quantification of H2AX phosphorylation using an In-Cell 

Western assay [26] revealed that the inactivation of the htpG gene in both the M1/5 and SP15 

strains abrogated the genotoxic effect induced by the colibactin (Figure 1). Transformation of the 

ΔhtpG mutants with p-htpG carrying the functional wild type htpG gene resulted in a complete 

restoration of the genotoxicity (Figure 1). Altogether, these data demonstrated that Hsp90Ec is 

required for colibactin mediated genotoxicity. 

 

Hsp90Ec is directly involved in colibactin biosynthesis 

The mature colibactin genotoxin has not been fully characterized yet. However, a biosynthetic 

by-product derived from the colibactin assembly line, i.e. the N-myristoyl-D-asparagine moiety, has 

been recently characterized [27,28]. This moiety, generated by the ClbN enzyme, is a prodrug motif 

cleaved by the ClbP peptidase in the late activation step. We developed a LC-MS assay to 

quantitatively measure the amount of N-myristoyl-D-asparagine as a means to indirectly quantify 

the production of the genotoxin by wild type and ΔhtpG mutant in E. coli M1/5 (Figure 2). This 

revealed that the amount of colibactin prodrug motif was not detectable in the ΔhtpG mutant 

compared to the wild type strain (Figure 2). These results indicated that Hsp90Ec was directly or 

indirectly required for the synthesis of the biosynthetic intermediate N-myristoyl-D-asparagine, and 

therefore for colibactin biosynthesis. 

 

Hsp90Ec does not regulate transcription of the pks island genes 

To investigate whether Hsp90Ec was involved in the regulation of colibactin production via 
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transcriptional regulation of colibactin biosynthesis genes, we quantified the transcription of clb 

genes encoded on the pks island, in relation to htpG expression (Supplementary Methods, Figure 3). 

M1/5 wild type strain and its ΔhtpG derivative were grown at 37°C and then shifted to 45°C to 

provoke a heat shock stress, known to induce Hsp90Ec production [29]. Total RNA was isolated and 

was used for a transcriptional analysis of the htpG gene and genes clbA, clbC, clbJ, clbP and clpQ, 

selected to monitor the expression of the different transcriptional units identified in the pks island 

[30]. This revealed that a transient heat shock resulted in an increased transcription of htpG (Figure 

3), as previously shown [29]. Nonetheless, the transcription of the clb genes was not altered in 

response to a heat shock stress, and was unchanged whether htpG was functional or inactivated 

(Figure 3). These data suggested that Hsp90Ec was not involved in the transcription of the pks island 

genes. 

 

Hsp90Ec is involved in yersiniabactin production 

E. coli possesses biosynthetic pathways that yield compounds belonging to the same chemical 

family as colibactin, i.e. siderophores, which mediate bacterial uptake of iron and other metals [8]. 

E. coli strains are known to synthesize up to four different types of siderophores: aerobactin, 

enterobactin, salmochelins and yersiniabactin, which are PK-NRP compounds except for 

aerobactin. To determine whether Hsp90Ec is also involved in siderophore production, we quantified 

by LC-MS the amount of each siderophore [31] synthesized by wild type or ΔhtpG mutant E. coli 

M1/5 and SP15 strains (Figure 4). This revealed that the synthesis of yersiniabactin was decreased 

in both M1/5 ΔhtpG and SP15 ΔhtpG mutant strains compared to the wild type strains. The amount 

of the other siderophores remained unchanged whether htpG was disrupted or not (Figure 4). These 

data indicated that Hsp90Ec also contributed to the biosynthesis or accumulation of yersiniabactin. 
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Interplay between Hsp90Ec and the ClpQ protease modulates colibactin and yersiniabactin 

biosynthesis 

Specific interplays between Hsp90Ec and the chaperone/protease network were previously 

reported [32,33]. In order to assess whether the absence of Hsp90Ec would abolish competition with 

proteases for colibactin-involved client binding, we tested the effect of the disruption of the three 

major E. coli cytosolic stress proteases Lon, ClpP and ClpQ (also called HslV) on the ΔhtpG mutant 

phenotype. The lon, clpP or clpQ (or hslV) genes were individually inactivated in the M1/5 ΔhtpG 

mutant strain (see Supplementary Methods). The resulting double mutants (Supplementary Table 1) 

were analyzed for the production of colibactin by quantification of the megalocytosis phenotype 

(Figure 5A), quantification of colibactin prodrug motif synthesis (Figure 5B), and for the production 

of yersiniabactin (Figure 5C).  

The megalocytosis assay revealed that inactivation of the lon or clpP genes did not restore the 

genotoxic effect of colibactin in the ΔhtpG mutant (Figure 5A). On the contrary, infection of HeLa 

cells with the ΔhtpG ΔclpQ double mutant resulted in a restored megalocytosis phenotype, 

indicating the production of colibactin (Figure 5A). Transformation of this double mutant with a 

plasmid carrying the functional clpYQ operon (p-clpYQ, Supplementary Table 1) resulted in a 

decreased colibactin activity (Figure 5A). We then analyzed a ΔclpQ mutant in E. coli strain M1/5 

(Supplementary Table 1) for colibactin production in the megalocytosis assay (Figure 5A). 

Inactivation of the clpQ gene resulted in a colibactin production level similar to the wild type strain 

(Figure 5A). When the ΔclpQ mutant was transformed with an inducible and high copy number 

plasmid carrying the functional clpYQ operon (p-clpYQ, Supplementary Table 1), the resulting 

complemented derivative lost the ability to induce megalocytosis (Figure 5A). Moreover, 

introduction of the same plasmid in wild type strain also resulted in the loss of the megalocytosis 

phenotype. 

We quantified by LC-MS the amount of N-myristoyl-D-asparagine (Figure 5B) and the 

production of yersiniabactin (Figure 5C) synthesized by ΔhtpG ΔclpQ and ΔclpQ mutants and 
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complemented derivatives of E. coli M1/5. Patterns similar to those obtained in the megalocytosis 

experiments (Figure 5A) were observed. 

Altogether, these results indicated that disruption of the ClpQ protease allowed restoration of 

colibactin and yersiniabactin production in the absence of Hsp90Ec. These data suggested that both 

the Hsp90Ec molecular chaperone and the ClpQ protease might share specific substrate(s) of the 

colibactin and the yersiniabactin biosynthesis pathways, and that Hsp90Ec could protect the 

substrate(s) from ClpQ-mediated degradation. 

 

Hsp90Ec is required for full virulence of ExPEC in a meningitis infection model 

Colibactin and yersiniabactin are bona fide virulence factors [5,8–10]. To address the biological 

relevance of the chaperone protein Hsp90Ec on E. coli virulence in vivo, we analyzed the effects of 

the htpG gene disruption during systemic infection in animals, using a mouse model of sepsis and a 

rat model of neonatal meningitis (Figure 6). 

SP15 wild type and ΔhtpG mutant E. coli strains were injected into mice footpads to induce 

sepsis, as previously described [5]. Infected mice were then treated with antibiotics and hydration 

20 hours post-infection. Monitoring of animal survival revealed that the mortality of mice 

inoculated with wild type SP15 appeared higher than that in the SP15 ΔhtpG group (Figure 6A); 

however, the log-rank test was not statistically significant. 

The second infection model tested the ability of wild type and ΔhtpG mutant E. coli A192PP 

strains to induce systemic infection in neonatal rats following oral feeding of live A192PP bacteria 

[34]. The wild type E. coli A192PP strain produced lethal infection in all colonized pups. On the 

contrary, although a proportion of pups colonized with the A192PP ΔhtpG mutant did not survive, 

the overall lethal effect of this mutation was significantly attenuated (p = 0.0032), with an increased 

survival of about 20% (Figure 6B). This demonstrated that Hsp90Ec chaperone protein was required 

to maintain full virulence of ExPEC during systemic infection. 
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DISCUSSION 

In this study, we demonstrated that Hsp90Ec is mandatory for the production of two virulence 

factors produced by E. coli, the genotoxin colibactin and the siderophore yersiniabactin. Thus, our 

work provides new insights into the role of the Hsp90Ec molecular chaperone, together with the 

recent studies that highlighted Hsp90Ec functions in E. coli [21,32,35,36]. Other bacterial Hsp90 

were previously shown to be required for the biosynthesis of PK-NRP compounds, such as 

albicidin, an antibiotic and phytotoxin produced by Xanthomonas albilineans [37], or arthrobactin, 

a biosurfactant produced by Pseudomonas strains [38]. Based on these studies, we could 

hypothesize that the molecular chaperone Hsp90Ec either facilitates the folding or prevents a rapid 

degradation of a colibactin-synthesis enzyme(s), as proposed for the biosynthesis of arthrobactin in 

Pseudomonas sp. [38]. Moreover, disruption of the clpQ gene allowed a restoration of colibactin 

and yersiniabactin biosynthesis in the absence of Hsp90Ec, which suggests that the chaperone and 

the protease could share common client protein(s) in the biosynthetic pathways. The fact that 

overexpression of the clpYQ operon induced a decrease of colibactin-mediated genotoxicity is in 

agreement with the substrate overlap, and suggests that Hsp90Ec could protect a substrate required 

for colibactin production from degradation by the ClpQ protease. The interplay between Hsp90Ec 

and ClpQ might be an efficient way to posttranslationally control colibactin synthesis. 

Unfortunately, we have not yet identified a specific client protein involved in colibactin and 

yersiniabactin biosynthesis directly interacting with Hps90Ec. So far, only two characterized client 

proteins for Hsp90Ec have been reported in E. coli, the ribosomal protein L2 [39] and the DNA-

replication initiator DnaA [40]. The incapacity to identify a specific partner in these pathways could 

also be explained by a more general function of the chaperone. We indeed hypothesize that Hsp90Ec 

participates in the assembly or stabilization of the biosynthetic machinery complex, as it has been 

proposed for the biosynthesis of albicidin in Xanthomonas albilineans, where no HtpG-specific 

client protein has been identified [37].  
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Colibactin and yersiniabactin have been characterized as virulence factors in vivo [5,8–10]. 

Here, we demonstrated that Hsp90Ec is required for full virulence of ExPEC in a model of neonatal 

meningitis, thus linking a major stress-induced molecular chaperone involved in protein 

homeostasis to a successful infection. Our study highlights for the first time the role of Hsp90Ec in 

E. coli virulence. In other bacterial species, HtpG has been demonstrated to be involved in the 

virulence of Edwardsiella tarda [41], Francisella tularensis [42], Leptospira interrogans [43] and 

Salmonella typhimurium [44]. Here, we showed that Hsp90Ec is required for successful infection in 

a rat model of neonatal meningitis, which support the fact that bacterial stress adaptation through 

the global heat shock response could be essential for a successful infectious process.  

The involvement of HtpG in the virulence of various bacterial species led us to propose bacterial 

Hsp90 as a potential antimicrobial therapeutic target, as described for eukaryotic Hsp90 in the 

treatment of various human cancers [18], but also protozoan [45] and fungal [46] infections. 

Geldanamycin and radicicol are two natural products that have both been shown to inhibit the 

ATPase activity and function of the eukaryotic Hsp90 chaperone [18]. Both compounds have also 

been demonstrated to inhibit bacterial Hsp90 [47,48]. The use of these two inhibitors in our animal 

models would provide us with invaluable information. The major challenge of this promising 

strategy would be to develop Hsp90 inhibitors specific for the prokaryotic isoform of the molecular 

chaperone to avoid side effects of antimicrobial treatment by eukaryotic Hsp90 inhibition. 

Additional knowledge about Hsp90Ec will be required to reach that objective. 
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FIGURE LEGENDS 

Figure 1. The molecular chaperone Hsp90Ec (HtpG) is required for Escherichia coli genotoxicity. 

The production of colibactin by E. coli strains M1/5 and SP15 derivatives was determined by 

quantification of megalocytosis (A) and of H2AX phosphorylation (B). E. coli wild type strain, 

ΔhtpG mutants and complemented derivatives were cocultivated with HeLa cells for 4 h, then 

washed as previously described [2]. At the end of infection, bacterial growth was similar for all 

strains. A, After infection, the cells were incubated for 72 h with appropriate antibiotics before 

protein staining with methylene blue. The staining was quantified by acid-extraction of methylene 

blue and measurement of absorbance at an optical density of 660 nm (OD660 nm). Multiplicity of 

infection: MOI = 200. Statistical analysis: one-way Anova. ***: p < 0.001, ns: not significant. B, 

After infection, the cells were incubated 4 h in DMEM medium supplemented with antibiotics 

before fixation, then permeabilized and labeled for DNA (pseudo-colored red) and phosphorylated 

H2AX histone (γ-H2AX, pseudo-colored green) using an In-Cell Western method [26]. MOI = 50 

to 12. 

 

Figure 2. Hsp90Ec required for the synthesis of colibactin prodrug motif. The colibactin prodrug 

motif N-myristoyl-D-asparagine produced by E. coli strain M1/5 wild type and ΔhtpG mutant was 

quantified by LC-MS. Bacteria were cultivated at 37°C for 18 h in DMEM medium, and N-

myristoyl-D-asparagine was quantified in culture supernatants by LC-MS using N-myristoyl-L-

asparagine (isomer of the N-myristoyl-D-asparagine colibactin prodrug motif) as a standard. The 

results were normalized to the bacterial biomass and are presented as quantity of N-myristoyl-D-

asparagine (ng/mL). Data represented in the graph were obtained from three biological replicates. 

Similar results were observed for two independent experiments. Statistical analysis: unpaired t-test. 

***: p < 0.001, **: p < 0.01, ns: not significant. 
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Figure 3. Hsp90Ec (HtpG) does not regulate the transcription of genes located on the pks island. 

Gene expression level of htpG and five clb genes of the pks island during a heat shock was 

measured by quantitative RT-PCR. E. coli strain M1/5 wild type or ∆htpG mutant were cultivated at 

37°C for 3 hours. A fraction of the cultures was transferred at 45°C during 30 minutes to induce a 

heat shock. After total RNA extraction, transcription level of htpG, clbA, clbC, clbJ, clbP and clbQ 

genes was determined by qRT-PCR. Results were normalized to hcaT reference gene expression 

and are presented as increases (n-fold) in expression level compared to that of M1/5 wild type strain 

cultivated at 37°C. Statistical analysis: one-way Anova. ***: p < 0.001. 

 

Figure 4. Hsp90Ec is also involved in yersiniabactin production. Siderophore production by E. coli 

strains M1/5, SP15 and derivatives was quantified by LC-MS. E. coli strains M1/5 and SP15 wild 

type and ΔhtpG mutant were cultivated at 37°C for 18 h in DMEM medium. Siderophore 

production was quantified by LC-MS, as described previously [31]. The results were normalized to 

the bacterial biomass and are presented as peak surfaces. Data represented in the graph were 

obtained from three biological replicates. Similar results were observed for two independent 

experiments. Statistical analysis: unpaired t-test. ***: p < 0.001. 

 

Figure 5. The protease ClpQ is involved in colibactin and yersiniabactin production in combination 

with Hsp90Ec. A, Colibactin-mediated genotoxicity was determined by infection of HeLa cells and 

quantification of megalocytosis for E. coli strain M1/5 and derivatives, as described in Figure 1A. 

Multiplicity of infection: MOI = 200. Statistical analysis: one-way Anova. ***: p < 0.001, ns: not 

significant. B, Colibactin prodrug motif N-myristoyl-D-asparagine production by E. coli strain M1/5 

and derivatives was quantified by LC-MS, as described in Figure 2. The results were normalized to 

the bacterial biomass and are presented as quantity of N-myristoyl-D-asparagine (ng/mL). Statistical 

analysis: one-way Anova. **: p < 0.01, ns: not significant. C, Yersiniabactin production by E. coli 

strains M1/5 and derivatives was quantified by LC-MS, as described in Figure 4. The results were 
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normalized to bacterial biomass and are presented as peak surfaces. Statistical analysis: one-way 

Anova. ***: p < 0.001, **: p < 0.01, ns: not significant. 

 

Figure 6. Effect of htpG inactivation in in vivo models of systemic infection. A, Virulence of E. 

coli strain SP15 wild type and ΔhtpG mutant was evaluated in a murine model of sepsis with 

antibiotic rescue [5]. Mice received footpad injection with PBS or 108 CFU of E. coli SP15 wild 

type strain or ΔhtpG mutant. Mice were then treated with gentamicin (100 μg per mouse) 20 hours 

post-injection. Percentage of mice survival was monitored for the different groups (n = 15/group). 

The data shown in the graph are pooled data obtained from two independent experiments. Statistical 

analysis: log-rank test. ns: not significant (p = 0.117). B, Virulence of E. coli strain A192PP and 

ΔhtpG mutant was evaluated in a rat model of neonatal meningitis [10]. Two-day-old rats received 

an orally fed 2-6  106 CFU of E. coli strain A192PP wild type or ΔhtpG mutant. Percentage of rat 

survival was monitored for the different groups (n = 12/group). The data shown in the graph are 

pooled data obtained from three independent experiments. Statistical analysis: log-rank test. **: p < 

0.005 (p = 0.0031). 
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