

## Characterizing TPS Microstructure A Review of Some Techniques



Matthew Gasch\* NASA Ames Research Center

Mairead Stackpoole, Parul Agrawal, Jose Chavez-Garcia ERC Inc

> Acknowledgement David Gilley - Micromeretics Corporation

**March 2011** 



- Review of NASA Ames Capabilities
- Characterization Techniques
  - -SEM
  - -ASAP
- Summary



## **Characterization Techniques - SEM**

- The XL30 ESEM combines a range of operating modes from high to low vacuum into a single versatile instrument, with different operating modes being easy to select and optimize to the particular application
  - Accelerating Voltage 0.5 to 30kV
  - Magnification 25x to 200,000x
  - Resolution ~5nm @ 30kV
  - Electron Backscatter Detector
  - Energy Dispersive X-Ray
- The XL30 ESEM located in TSM operates at chamber pressures up to 20 Torr
  - Allows a much broader range of materials to be imaged, particularly the many materials that contain water, or are of outgassing or non-conductive nature
  - Substantially reduces the need for specimen preparation (i.e. coating)





- The XL30 ESEM combines a range of operating modes from high to low vacuum into a single versatile instrument, with different operating modes being easy to select and optimize to the particular application
  - Accelerating Voltage 0.5 to 30kV
  - Magnification 25x to 200,000x
  - Resolution ~5nm @ 30kV
  - Electron Backscatter Detector
  - Energy Dispersive X-Ray
- The XL30 ESEM located in TSM operates at chamber pressures up to 20 Torr
  - Allows a much broader range of materials to be imaged, particularly the many materials that contain water, or are of outgassing or non-conductive nature
  - Substantially reduces the need for specimen preparation (i.e. coating)





## **SEM of Rigid Carbon Substrate at Different Scales**



Highlights importance of high resolution SEM to capture fiber surface details which are not obvious at lower magnifications



## **Microstructure of Stardust PICA**

### Combined with other techniques SEM is a powerful tool to aid

in explaining data

- Phenolic char high surface area phase is absent in slices 1 and 2
- •Absence of phenolic char constituent accounts for density drop in first few millimeters of sample char surface



Slice 2

Slice 6

Slice 11

M. Stackpoole, S. Sepka,, I. Cozumuta, and D. Kontinos, "Post-Flight Evaluation of Stardust Sample Return Capsule Forebody Heatshield Material," AIAA-2008-1202, Jan., 2008



## **SEM Backscatter Analysis**

- The XL30 ESEM combines a range of operating modes from high to low vacuum into a single versatile instrument, with different operating modes being easy to select and optimize to the particular application
  - Accelerating Voltage 0.5 to 30kV
  - Magnification 25x to 200,000x
  - Resolution ~5nm @ 30kV
  - Electron Backscatter Detector
  - Energy Dispersive X-Ray
- The XL30 ESEM located in TSM operates at chamber pressures up to 10 Torr
  - Allows a much broader range of materials to be imaged, particularly the many materials that contain water, or are of outgassing or non-conductive nature
  - Substantially reduces the need for specimen preparation (i.e. coating)





## **SEM X-Ray Analysis**

- The XL30 ESEM combines a range of operating modes from high to low vacuum into a single versatile instrument, with different operating modes being easy to select and optimize to the particular application
  - Accelerating Voltage 0.5 to 30kV
  - Magnification 25x to 200,000x
  - Resolution ~5nm @ 30kV
  - Electron Backscatter Detector
  - Energy Dispersive X-Ray
- The XL30 ESEM located in TSM operates at chamber pressures up to 20 Torr
  - Allows a much broader range of materials to be imaged, particularly the many materials that contain water, or are of outgassing or non-conductive nature
  - Substantially reduces the need for specimen preparation (i.e. coating)





## **SEM EDX Mapping**



2. "Validation Testing of a New Dual Heat Pulse, Dual Layer Thermal Protection System Applicable to Human Mars Entry, Descent and Landing", J.O. Arnold, E. Venkatapathy, Y.-K. Chen, S. Sepka, P. Agrawal, 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, 28 June - 1 July 2010, Chicago, Illinois, pp 2010-5050



## **Characterization Techniques - SEM**

- The XL30 ESEM combines a range of operating modes from high to low vacuum into a single versatile instrument, with different operating modes being easy to select and optimize to the particular application
  - Accelerating Voltage 0.5 to 30kV
  - Magnification 25x to 200,000x
  - Resolution ~5nm @ 30kV
  - Electron Backscatter Detector
  - Energy Dispersive X-Ray
- The XL30 ESEM located in TSM operates at chamber pressures up to 20 Torr
  - Allows a much broader range of materials to be imaged, particularly the many materials that contain water, or are of outgassing or non-conductive nature
  - Substantially reduces the need for specimen preparation (i.e. coating)





# **In-Situ Electron Microscope Testing**

#### **Objective**

- Conduct thermal- mechanical tests on TPS materials and understand failure mechanisms at microstructural scale
- Use the understanding gained by these tests in materials process optimization and finite element modeling

#### SEM - Stages

- Mechanical and thermal stages are mounted inside an environmental chamber as shown
- Uniaxial tension test, 3-pt, 4-pt bend tests can be performed on TPS material at room temperature, low (-400C) and elevated (1200 C) temperatures
- The stages are equipped with thermocouples and data acquisition system to monitor temperature and obtain stress-strain profile

#### **Baseline Tests for EDL Project**

- Uniaxial tension tests are performed (at room temperature) on virgin and charred PICA material in the in-plane direction to establish baseline
- The coupons are notched at one end as shown in Figure 2 to focus the electron beam and observe failure mechanism
- Stress strain curves are obtained on both notched and un notched coupon to calculate fracture toughness and investigate the effect of discontinuity on overall behavior



Thermal/Mechanical stage mounted in SEM







## **Characterization Techniques - ASAP**

#### Accelerated Surface Area and Porosimetry System (ASAP)

- Atoms at the surface of a solid are incompletely bound. These surface atoms are more reactive and they attract gas (Van der Waals forces)
- Surface area is an important parameter in TPS (especially low density TPS)
- Surface area helps determine how
  Solids oxidize
  - React with other materials





Example TPS with a very low density / high surface area phase

# Surface Area and Pore Volume

- Surface Area Exposed extent of sample accessible to adsorptive
- Pore Volume Volume of pores accessible to condensed adsorbate

### Types of Adsorption Isotherms

- The process of Adsorption is usually studied through plots know as adsorption isotherms
- Plot amounts of adsorbate gas adsorbed on the surface of sample at different pressures and constant temperature.

# Five different types of adsorption isotherm

 Depends on scale of porosity, adsorbate, sample, temperature etc





- Micropore Less than 2 nm in size
- Mesopore Between 2 and 50 nm in size
- Macropore Greater than 50 nm in size



- Sample preheated to remove adsorbed contaminants
- Sample cooled under vacuum to cryo temperature
- Adsorptive is introduced (usually N2) in controlled amounts
- Pressure allowed to equilibrate and the amount of gas adsorbed is determined for each amount of gas introduced
- Volume of gas adsorbed at each pressure gives an adsorption isotherm from this isotherm the amount of gas required to form a monolayer over the solid external surface and its pores is determined
- Knowing the area covered by each adsorbed gas molecule the surface area can be calculated







Further increase in gas pressure results in complete coverage of sample and all pores filled – BJT calculation used to obtain pore diameter and distribution

Get monolayer coverage as pressure increases (BET equation used to calculate SA)



## **Approach – Pore Size and Distribution**

- When determining SA conditions to adsorb a monolayer of gas molecules on the sample are used
- The process can be extended to allow gas to condense in the pores and the fine pores in the sample can be determined.
- Increasing the pressure will cause gas to condense in the smallest pores initially
- Pressure is increased until saturation when the micropores are filled
- The pressure is then reduced in a controlled manner, evaporating the condensed gas
- The adsorption and desorption portions of the isotherm provides information on pore size and distribution
- Approach is only valid for very small pores



# **Pore Size and Distribution**

Hysteresis

- Pores fill and empty at different relative pressures
- Originally used to describe pore shape
- Mostly due to connectivity of pores



Type IV Isotherm -Mesoporous Samples







- When seeking to understand ablator microstructure and morphology there are several useful techniques
  - SEM
    - Visual characterization at various length scales
    - Chemical mapping by backscatter or x-ray highlights areas of interest
    - Combined with other techniques (density, weight change, chemical analysis) SEM is a powerful tool to aid in explaining thermo/structural data
  - ASAP
    - Chemical characterization at various length scales
    - Chemical mapping of pore structure by gas adsorption
    - Provides a map of pore size vs. pore volume
    - Provided surface area of exposed TPS
- Both methods help characterize and understand how ablators react with other chemical species and provides insight into how they oxidize