97 research outputs found

    Dissipation in ferrofluids: Mesoscopic versus hydrodynamic theory

    Full text link
    Part of the field dependent dissipation in ferrofluids occurs due to the rotational motion of the ferromagnetic grains relative to the viscous flow of the carrier fluid. The classical theoretical description due to Shliomis uses a mesoscopic treatment of the particle motion to derive a relaxation equation for the non-equilibrium part of the magnetization. Complementary, the hydrodynamic approach of Liu involves only macroscopic quantities and results in dissipative Maxwell equations for the magnetic fields in the ferrofluid. Different stress tensors and constitutive equations lead to deviating theoretical predictions in those situations, where the magnetic relaxation processes cannot be considered instantaneous on the hydrodynamic time scale. We quantify these differences for two situations of experimental relevance namely a resting fluid in an oscillating oblique field and the damping of parametrically excited surface waves. The possibilities of an experimental differentiation between the two theoretical approaches is discussed.Comment: 14 pages, 2 figures, to appear in PR

    Hamiltonian Theory of the Composite Fermion Wigner Crystal

    Full text link
    Experimental results indicating the existence of the high magnetic field Wigner Crystal have been available for a number of years. While variational wavefunctions have demonstrated the instability of the Laughlin liquid to a Wigner Crystal at sufficiently small filling, calculations of the excitation gaps have been hampered by the strong correlations. Recently a new Hamiltonian formulation of the fractional quantum Hall problem has been developed. In this work we extend the Hamiltonian approach to include states of nonuniform density, and use it to compute the excitation gaps of the Wigner Crystal states. We find that the Wigner Crystal states near ν=1/5\nu=1/5 are quantitatively well described as crystals of Composite Fermions with four vortices attached. Predictions for gaps and the shear modulus of the crystal are presented, and found to be in reasonable agreement with experiments.Comment: 41 page, 6 figures, 3 table

    Domain wall formation and spin reorientation in finite-size magnetic systems

    Full text link
    We investigate the formation of stable one-dimensional N\'eel walls in a ferromagnetic slab with finite thickness and finite width. Taking into account the dipolar, the exchange and the uniaxial anisotropic crystalline field interactions, we derive an approximative analytical self-consistent expression that gives the wall width in terms of ratios between the three different energy scales of the problem. We also show that, even when the crystalline anisotropy does not favour the formation of domain walls, they can yet be formed due to the dipolar interaction and the finiteness of the system. Moreover, using a Stoner-Wohlfarth approach, we study the magnetization reorientation inside the domains under the action of an external magnetic field and obtain the respective hysteresis loops, showing that their shapes change from squared to inclined as the width of the slab varies. Finally, we discuss possible applications of this model to describe qualitatively some recent experimental data on thin films of MnAs grown over GaAs substrates.Comment: 11 pages, 10 eps figure

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Biofuels, greenhouse gases and climate change. A review

    Full text link
    corecore