44 research outputs found

    Biosurfactant Production by Rhizospheric Bacteria Isolated from Biochar Amended Soil Using Different Extraction Solvents

    Get PDF
    Microbial-derived surface-active compounds (biosurfactants) have attracted attention due to their low toxicity, cost-effectiveness, biodegradable nature and environment compatibility. Due to paucity of knowledge in the production of biosurfactant by microorganisms from other sources such as biochar-amended soil, the present study investigates the potential of rhizospheric bacteria isolated from biochar amended soil of okra plant in the production of biosurfactants using different recovery techniques. Rhizospheric bacteria were screened for biosurfactant production using Haemolytic, Oil spreading, Drop collapse, Methylene blue method, Bacterial adhesion to hydrocarbon and Emulsification activity. The biosurfactant was extracted using different extraction solvents (acid precipitation, ethyl acetate, acetone, dichloromethane and chloroform/methanol). Degradation of hydrocarbon (diesel) was determined spectrophotometrically. A total of twenty-three rhizospheric bacteria were isolated from the soil of Abelmoschus esculentus (okra plant).  Nine isolates were positive for haemolysis with values between 1.1±0.2 mm by Enterobacter cloaca and 23.0±0.6 mm by Alcaligenes faecalis. Two isolates were positive for the drop collapse test. Only one isolate was positive for the methylene blue method. In the oil spreading test, ten isolates were positive and five isolates had the ability to adhere to hydrocarbons. Six isolates exhibited emulsification potential after 24 h, with the highest and lowest (65.9%) and (40.7%) recorded by Alcaligenes faecalis and Citrobacter sp, respectively. The biosurfactant produced by Alcaligenes faecalis using different recovery solvents showed that chloroform and methanol are the best extraction solvents and Alcaligenes faecalis was also able to degrade diesel oil over a period of 10 d. Conclusively, Alcaligenes faecalis recovered from soil amended sawdust biochar of okra plant is both a potent biosurfactant producer and an agent for remediating hydrocarbon-contaminated soil environments

    Trends in obesity and diabetes across Africa from 1980 to 2014: an analysis of pooled population-based studies

    Get PDF
    Background: The 2016 Dar Es Salaam Call to Action on Diabetes and Other non-communicable diseases (NCDs) advocates national multi-sectoral NCD strategies and action plans based on available data and information from countries of sub-Saharan Africa and beyond. We estimated trends from 1980 to 2014 in age-standardized mean body mass index (BMI) and diabetes prevalence in these countries, in order to assess the co-progression and assist policy formulation. Methods: We pooled data from African and worldwide population-based studies which measured height, weight and biomarkers to assess diabetes status in adults aged ≥ 18 years. A Bayesian hierarchical model was used to estimate trends by sex for 200 countries and territories including 53 countries across five African regions (central, eastern, northern, southern and western), in mean BMI and diabetes prevalence (defined as either fasting plasma glucose of ≥ 7.0 mmol/l, history of diabetes diagnosis, or use of insulin or oral glucose control agents). Results: African data came from 245 population-based surveys (1.2 million participants) for BMI and 76 surveys (182 000 participants) for diabetes prevalence estimates. Countries with the highest number of data sources for BMI were South Africa (n = 17), Nigeria (n = 15) and Egypt (n = 13); and for diabetes estimates, Tanzania (n = 8), Tunisia (n = 7), and Cameroon, Egypt and South Africa (all n = 6). The age-standardized mean BMI increased from 21.0 kg/m2 (95% credible interval: 20.3–21.7) to 23.0 kg/m2 (22.7–23.3) in men, and from 21.9 kg/m2 (21.3–22.5) to 24.9 kg/m2 (24.6–25.1) in women. The age-standardized prevalence of diabetes increased from 3.4% (1.5–6.3) to 8.5% (6.5–10.8) in men, and from 4.1% (2.0–7.5) to 8.9% (6.9–11.2) in women. Estimates in northern and southern regions were mostly higher than the global average; those in central, eastern and western regions were lower than global averages. A positive association (correlation coefficient ≃ 0.9) was observed between mean BMI and diabetes prevalence in both sexes in 1980 and 2014. Conclusions: These estimates, based on limited data sources, confirm the rapidly increasing burden of diabetes in Africa. This rise is being driven, at least in part, by increasing adiposity, with regional variations in observed trends. African countries’ efforts to prevent and control diabetes and obesity should integrate the setting up of reliable monitoring systems, consistent with the World Health Organization’s Global Monitoring System Framework

    Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants

    Get PDF
    BACKGROUND: One of the global targets for non-communicable diseases is to halt, by 2025, the rise in the age-standardised adult prevalence of diabetes at its 2010 levels. We aimed to estimate worldwide trends in diabetes, how likely it is for countries to achieve the global target, and how changes in prevalence, together with population growth and ageing, are affecting the number of adults with diabetes. METHODS: We pooled data from population-based studies that had collected data on diabetes through measurement of its biomarkers. We used a Bayesian hierarchical model to estimate trends in diabetes prevalence—defined as fasting plasma glucose of 7·0 mmol/L or higher, or history of diagnosis with diabetes, or use of insulin or oral hypoglycaemic drugs—in 200 countries and territories in 21 regions, by sex and from 1980 to 2014. We also calculated the posterior probability of meeting the global diabetes target if post-2000 trends continue. FINDINGS: We used data from 751 studies including 4 372 000 adults from 146 of the 200 countries we make estimates for. Global age-standardised diabetes prevalence increased from 4·3% (95% credible interval 2·4–7·0) in 1980 to 9·0% (7·2–11·1) in 2014 in men, and from 5·0% (2·9–7·9) to 7·9% (6·4–9·7) in women. The number of adults with diabetes in the world increased from 108 million in 1980 to 422 million in 2014 (28·5% due to the rise in prevalence, 39·7% due to population growth and ageing, and 31·8% due to interaction of these two factors). Age-standardised adult diabetes prevalence in 2014 was lowest in northwestern Europe, and highest in Polynesia and Micronesia, at nearly 25%, followed by Melanesia and the Middle East and north Africa. Between 1980 and 2014 there was little change in age-standardised diabetes prevalence in adult women in continental western Europe, although crude prevalence rose because of ageing of the population. By contrast, age-standardised adult prevalence rose by 15 percentage points in men and women in Polynesia and Micronesia. In 2014, American Samoa had the highest national prevalence of diabetes (>30% in both sexes), with age-standardised adult prevalence also higher than 25% in some other islands in Polynesia and Micronesia. If post-2000 trends continue, the probability of meeting the global target of halting the rise in the prevalence of diabetes by 2025 at the 2010 level worldwide is lower than 1% for men and is 1% for women. Only nine countries for men and 29 countries for women, mostly in western Europe, have a 50% or higher probability of meeting the global target. INTERPRETATION: Since 1980, age-standardised diabetes prevalence in adults has increased, or at best remained unchanged, in every country. Together with population growth and ageing, this rise has led to a near quadrupling of the number of adults with diabetes worldwide. The burden of diabetes, both in terms of prevalence and number of adults affected, has increased faster in low-income and middle-income countries than in high-income countries. FUNDING: Wellcome Trust

    Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults.

    Get PDF
    BACKGROUND: Underweight, overweight, and obesity in childhood and adolescence are associated with adverse health consequences throughout the life-course. Our aim was to estimate worldwide trends in mean body-mass index (BMI) and a comprehensive set of BMI categories that cover underweight to obesity in children and adolescents, and to compare trends with those of adults. METHODS: We pooled 2416 population-based studies with measurements of height and weight on 128·9 million participants aged 5 years and older, including 31·5 million aged 5-19 years. We used a Bayesian hierarchical model to estimate trends from 1975 to 2016 in 200 countries for mean BMI and for prevalence of BMI in the following categories for children and adolescents aged 5-19 years: more than 2 SD below the median of the WHO growth reference for children and adolescents (referred to as moderate and severe underweight hereafter), 2 SD to more than 1 SD below the median (mild underweight), 1 SD below the median to 1 SD above the median (healthy weight), more than 1 SD to 2 SD above the median (overweight but not obese), and more than 2 SD above the median (obesity). FINDINGS: Regional change in age-standardised mean BMI in girls from 1975 to 2016 ranged from virtually no change (-0·01 kg/m2 per decade; 95% credible interval -0·42 to 0·39, posterior probability [PP] of the observed decrease being a true decrease=0·5098) in eastern Europe to an increase of 1·00 kg/m2 per decade (0·69-1·35, PP>0·9999) in central Latin America and an increase of 0·95 kg/m2 per decade (0·64-1·25, PP>0·9999) in Polynesia and Micronesia. The range for boys was from a non-significant increase of 0·09 kg/m2 per decade (-0·33 to 0·49, PP=0·6926) in eastern Europe to an increase of 0·77 kg/m2 per decade (0·50-1·06, PP>0·9999) in Polynesia and Micronesia. Trends in mean BMI have recently flattened in northwestern Europe and the high-income English-speaking and Asia-Pacific regions for both sexes, southwestern Europe for boys, and central and Andean Latin America for girls. By contrast, the rise in BMI has accelerated in east and south Asia for both sexes, and southeast Asia for boys. Global age-standardised prevalence of obesity increased from 0·7% (0·4-1·2) in 1975 to 5·6% (4·8-6·5) in 2016 in girls, and from 0·9% (0·5-1·3) in 1975 to 7·8% (6·7-9·1) in 2016 in boys; the prevalence of moderate and severe underweight decreased from 9·2% (6·0-12·9) in 1975 to 8·4% (6·8-10·1) in 2016 in girls and from 14·8% (10·4-19·5) in 1975 to 12·4% (10·3-14·5) in 2016 in boys. Prevalence of moderate and severe underweight was highest in India, at 22·7% (16·7-29·6) among girls and 30·7% (23·5-38·0) among boys. Prevalence of obesity was more than 30% in girls in Nauru, the Cook Islands, and Palau; and boys in the Cook Islands, Nauru, Palau, Niue, and American Samoa in 2016. Prevalence of obesity was about 20% or more in several countries in Polynesia and Micronesia, the Middle East and north Africa, the Caribbean, and the USA. In 2016, 75 (44-117) million girls and 117 (70-178) million boys worldwide were moderately or severely underweight. In the same year, 50 (24-89) million girls and 74 (39-125) million boys worldwide were obese. INTERPRETATION: The rising trends in children's and adolescents' BMI have plateaued in many high-income countries, albeit at high levels, but have accelerated in parts of Asia, with trends no longer correlated with those of adults. FUNDING: Wellcome Trust, AstraZeneca Young Health Programme

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities. This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity. Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017—and more than 80% in some low- and middle-income regions—was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing—and in some countries reversal—of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories

    A century of trends in adult human height

    Get PDF

    A century of trends in adult human height

    Get PDF

    Heterogeneous contributions of change in population distribution of body mass index to change in obesity and underweight NCD Risk Factor Collaboration (NCD-RisC)

    Get PDF
    From 1985 to 2016, the prevalence of underweight decreased, and that of obesity and severe obesity increased, in most regions, with significant variation in the magnitude of these changes across regions. We investigated how much change in mean body mass index (BMI) explains changes in the prevalence of underweight, obesity, and severe obesity in different regions using data from 2896 population-based studies with 187 million participants. Changes in the prevalence of underweight and total obesity, and to a lesser extent severe obesity, are largely driven by shifts in the distribution of BMI, with smaller contributions from changes in the shape of the distribution. In East and Southeast Asia and sub-Saharan Africa, the underweight tail of the BMI distribution was left behind as the distribution shifted. There is a need for policies that address all forms of malnutrition by making healthy foods accessible and affordable, while restricting unhealthy foods through fiscal and regulatory restrictions
    corecore