64 research outputs found

    CONFIRM: a double-blind, placebo controlled phase III clinical trial investigating the effect of nivolumab in patients with relapsed mesothelioma: study protocol for a randomised controlled trial

    Get PDF
    Background: Mesothelioma is an incurable, apoptosis-resistant cancer caused in most cases by previous exposure to asbestos and is increasing in incidence. It represents a growing health burden but remains under-researched, with limited treatment options. Early promising signals of activity relating to both PD-L1- and PD-1-targeted treatment in mesothelioma implicate a dependency of mesothelioma on this immune checkpoint. There is a need to evaluate checkpoint inhibitors in patients with relapsed mesothelioma where treatment options are limited. Methods: The addition of 12 months of nivolumab (anti-PD1 antibody) to standard practice will be conducted in the UK using a randomised, placebo-controlled phase III trial (the Cancer Research UK CONFIRM trial). A total of 336 patients with pleural or peritoneal mesothelioma who have received at least two prior lines of therapy will be recruited from UK secondary care sites. Patients will be randomised 2:1 (nivolumab:placebo), stratified according to epithelioid/non-epithelioid, to receive either 240 mg nivolumab monotherapy or saline placebo as a 30-min intravenous infusion. Treatment will be for up to 12 months. We will determine whether the use of nivolumab increases overall survival (the primary efficacy endpoint). Secondary endpoints will include progression-free survival, objective response rate, toxicity, quality of life and cost-effectiveness. Analysis will be performed according to the intention-to-treat principle using a Cox regression analysis for the primary endpoint (and for other time-to-event endpoints). Discussion: The outcome of this trial will provide evidence of the potential benefit of the use of nivolumab in the treatment of relapsed mesothelioma. If found to be clinically effective, safe and cost-effective it is likely to become the new standard of care in the UK

    Innovative solutions to sticky situations: Antiadhesive strategies for treating bacterial infections

    Get PDF
    ABSTRACT Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies.</jats:p

    MATRix-RICE therapy and autologous haematopoietic stem-cell transplantation in diffuse large B-cell lymphoma with secondary CNS involvement (MARIETTA): an international, single-arm, phase 2 trial.

    Get PDF
    BACKGROUND Secondary CNS lymphoma is a rare but potentially lethal event in patients with diffuse large B-cell lymphoma. We aimed to assess the activity and safety of an intensive, CNS-directed chemoimmunotherapy consolidated by autologous haematopoietic stem-cell transplantation (HSCT) in patients with secondary CNS lymphoma. METHODS This international, single-arm, phase 2 trial was done in 24 hospitals in Italy, the UK, the Netherlands, and Switzerland. Adults (aged 18-70 years) with histologically diagnosed diffuse large B-cell lymphoma and CNS involvement at the time of primary diagnosis or at relapse and Eastern Cooperative Oncology Group Performance Status of 3 or less were enrolled and received three courses of MATRix (rituximab 375 mg/m2, intravenous infusion, day 0; methotrexate 3·5 g/m2, the first 0·5 g/m2 in 15 min followed by 3 g/m2 in a 3 h intravenous infusion, day 1; cytarabine 2 g/m2 every 12 h, in 1 h intravenous infusions, days 2 and 3; thiotepa 30 mg/m2, 30 min intravenous infusion, day 4) followed by three courses of RICE (rituximab 375 mg/m2, day 1; etoposide 100 mg/m2 per day in 500-1000 mL over a 60 min intravenous infusion, days 1, 2, and 3; ifosfamide 5 g/m2 in 1000 mL in a 24 h intravenous infusion with mesna support, day 2; carboplatin area under the curve of 5 in 500 mL in a 1 h intravenous infusion, day 2) and carmustine-thiotepa and autologous HSCT (carmustine 400 mg/m2 in 500 mL glucose 5% solution in a 1-2 h infusion, day -6; thiotepa 5 mg/kg in saline solution in a 2 h infusion every 12 h, days -5 and -4). The primary endpoint was progression-free survival at 1 year. Overall and complete response rates before autologous HSCT, duration of response, overall survival, and safety were the secondary endpoints. Analyses were in the modified intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT02329080. The trial ended after accrual completion; the database lock was Dec 31, 2019. FINDINGS Between March 30, 2015, and Aug 3, 2018, 79 patients were enrolled. 75 patients were assessable. 319 (71%) of the 450 planned courses were delivered. At 1 year from enrolment the primary endpoint was met, 42 patients were progression free (progression-free survival 58%; 95% CI 55-61). 49 patients (65%; 95% CI 54-76) had an objective response after MATRix-RICE, 29 (39%) of whom had a complete response. 37 patients who responded had autologous HSCT. At the end of the programme, 46 patients (61%; 95% CI 51-71) had an objective response, with a median duration of objective response of 26 months (IQR 16-37). At a median follow-up of 29 months (IQR 20-40), 35 patients were progression-free and 33 were alive, with a 2-year overall survival of 46% (95% CI 39-53). Grade 3-4 toxicity was most commonly haematological: neutropenia in 46 (61%) of 75 patients, thrombocytopenia in 45 (60%), and anaemia in 26 (35%). 79 serious adverse events were recorded in 42 (56%) patients; four (5%) of those 79 were lethal due to sepsis caused by Gram-negative bacteria (treatment-related mortality 5%; 95% CI 0·07-9·93). INTERPRETATION MATRix-RICE plus autologous HSCT was active in this population of patients with very poor prognosis, and had an acceptable toxicity profile. FUNDING Stand Up To Cancer Campaign for Cancer Research UK, the Swiss Cancer Research foundation, and the Swiss Cancer League

    Dynamic contrast-enhanced CT compared with positron emission tomography CT to characterise solitary pulmonary nodules: the SPUtNIk diagnostic accuracy study and economic modelling

    Get PDF
    BACKGROUND: Current pathways recommend positron emission tomography-computerised tomography for the characterisation of solitary pulmonary nodules. Dynamic contrast-enhanced computerised tomography may be a more cost-effective approach. OBJECTIVES: To determine the diagnostic performances of dynamic contrast-enhanced computerised tomography and positron emission tomography-computerised tomography in the NHS for solitary pulmonary nodules. Systematic reviews and a health economic evaluation contributed to the decision-analytic modelling to assess the likely costs and health outcomes resulting from incorporation of dynamic contrast-enhanced computerised tomography into management strategies. DESIGN: Multicentre comparative accuracy trial. SETTING: Secondary or tertiary outpatient settings at 16 hospitals in the UK. PARTICIPANTS: Participants with solitary pulmonary nodules of ≥ 8 mm and of ≤ 30 mm in size with no malignancy in the previous 2 years were included. INTERVENTIONS: Baseline positron emission tomography-computerised tomography and dynamic contrast-enhanced computer tomography with 2 years' follow-up. MAIN OUTCOME MEASURES: Primary outcome measures were sensitivity, specificity and diagnostic accuracy for positron emission tomography-computerised tomography and dynamic contrast-enhanced computerised tomography. Incremental cost-effectiveness ratios compared management strategies that used dynamic contrast-enhanced computerised tomography with management strategies that did not use dynamic contrast-enhanced computerised tomography. RESULTS: A total of 380 patients were recruited (median age 69 years). Of 312 patients with matched dynamic contrast-enhanced computer tomography and positron emission tomography-computerised tomography examinations, 191 (61%) were cancer patients. The sensitivity, specificity and diagnostic accuracy for positron emission tomography-computerised tomography and dynamic contrast-enhanced computer tomography were 72.8% (95% confidence interval 66.1% to 78.6%), 81.8% (95% confidence interval 74.0% to 87.7%), 76.3% (95% confidence interval 71.3% to 80.7%) and 95.3% (95% confidence interval 91.3% to 97.5%), 29.8% (95% confidence interval 22.3% to 38.4%) and 69.9% (95% confidence interval 64.6% to 74.7%), respectively. Exploratory modelling showed that maximum standardised uptake values had the best diagnostic accuracy, with an area under the curve of 0.87, which increased to 0.90 if combined with dynamic contrast-enhanced computerised tomography peak enhancement. The economic analysis showed that, over 24 months, dynamic contrast-enhanced computerised tomography was less costly (£3305, 95% confidence interval £2952 to £3746) than positron emission tomography-computerised tomography (£4013, 95% confidence interval £3673 to £4498) or a strategy combining the two tests (£4058, 95% confidence interval £3702 to £4547). Positron emission tomography-computerised tomography led to more patients with malignant nodules being correctly managed, 0.44 on average (95% confidence interval 0.39 to 0.49), compared with 0.40 (95% confidence interval 0.35 to 0.45); using both tests further increased this (0.47, 95% confidence interval 0.42 to 0.51). LIMITATIONS: The high prevalence of malignancy in nodules observed in this trial, compared with that observed in nodules identified within screening programmes, limits the generalisation of the current results to nodules identified by screening. CONCLUSIONS: Findings from this research indicate that positron emission tomography-computerised tomography is more accurate than dynamic contrast-enhanced computerised tomography for the characterisation of solitary pulmonary nodules. A combination of maximum standardised uptake value and peak enhancement had the highest accuracy with a small increase in costs. Findings from this research also indicate that a combined positron emission tomography-dynamic contrast-enhanced computerised tomography approach with a slightly higher willingness to pay to avoid missing small cancers or to avoid a 'watch and wait' policy may be an approach to consider. FUTURE WORK: Integration of the dynamic contrast-enhanced component into the positron emission tomography-computerised tomography examination and the feasibility of dynamic contrast-enhanced computerised tomography at lung screening for the characterisation of solitary pulmonary nodules should be explored, together with a lower radiation dose protocol

    Comparative Accuracy and Cost-Effectiveness of Dynamic Contrast Enhanced Computed Tomography and Positron Emission Tomography in the Characterisation of Solitary Pulmonary Nodules

    Get PDF
    Abstract Introduction: Dynamic contrast-enhanced computed tomography (DCE-CT) and Positron Emission Tomography/Computed Tomography (PET/CT) have a high reported accuracy for the diagnosis of malignancy in solitary pulmonary nodules. The aim of this study was to compare the accuracy and cost-effectiveness of these. Methods: In this prospective multicentre trial, 380 participants with a solitary pulmonary nodule (8-30mm) and no recent history of malignancy underwent DCE-CT and PET/CT. All patients underwent either biopsy with histological diagnosis or completed CT follow-up. Primary outcome measures were sensitivity, specificity, and overall diagnostic accuracy for PET/CT and DCE-CT. Costs and cost-effectiveness were estimated from a healthcare provider perspective using a decision-model. Results: 312 participants (47% female, 68.1±9.0 years) completed the study, with 61% rate of malignancy at 2 years. The sensitivity, specificity, positive predictive value and negative predictive values for DCE-CT were 95.3% [95% CI 91.3;97.5], 29.8% [95% CI 22.3;38.4], 68.2% [95% CI 62.4%;73.5%] and 80.0% [95% CI 66.2;89.1] respectively, and for PET/CT were 79.1% [95% CI 72.7;84.2], 81.8% [95% CI 74.0;87.7], 87.3%[95% CI 81.5;91.5) and 71·2% [95% CI 63.2;78.1]. The area under the receiver operator characteristic curve (AUROC) for DCE-CT and PET/CT was 0.62 [95%CI 0.58;0.67] and 0.80 [95%CI 0.76;0.85] respectively (p<0.001). Combined results significantly increased diagnostic accuracy over PET/CT alone (AUROC=0.90 [95%CI 0.86;0.93], p<0.001). DCE-CT was preferred when the willingness to pay per incremental cost per correctly treated malignancy was below £9000. Above £15500 a combined approach was preferred. Conclusions: PET/CT has a superior diagnostic accuracy to DCE-CT for the diagnosis of solitary pulmonary nodules. Combining both techniques improves the diagnostic accuracy over either test alone and could be cost-effective. (Clinical trials.gov - NCT02013063)

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore