32 research outputs found

    Settings for non-household transmission of SARS-CoV-2 during the second lockdown in England and Wales – analysis of the Virus Watch household community cohort study [version 1; peer review: 2 approved]

    Get PDF
    Background: "Lockdowns" to control serious respiratory virus pandemics were widely used during the coronavirus disease 2019 (COVID-19) pandemic.  However, there is limited information to understand the settings in which most transmission occurs during lockdowns, to support refinement of similar policies for future pandemics. / Methods: Among Virus Watch household cohort participants we identified those infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outside the household.  Using survey activity data, we undertook multivariable logistic regressions assessing the contribution of activities on non-household infection risk.  We calculated adjusted population attributable fractions (APAF) to estimate which activity accounted for the greatest proportion of non-household infections during the pandemic's second wave. / Results: Among 10,858 adults, 18% of cases were likely due to household transmission.  Among 10,475 participants (household-acquired cases excluded), including 874 non-household-acquired infections, infection was associated with: leaving home for work or education (AOR 1.20 (1.02 - 1.42), APAF 6.9%); public transport (more than once per week AOR 1.82 (1.49 - 2.23), public transport APAF 12.42%); and shopping (more than once per week AOR 1.69 (1.29 - 2.21), shopping APAF 34.56%).  Other non-household activities were rare and not significantly associated with infection. / Conclusions: During lockdown, going to work and using public or shared transport independently increased infection risk, however only a minority did these activities.  Most participants visited shops, accounting for one-third of non-household transmission.  Transmission in restricted hospitality and leisure settings was minimal suggesting these restrictions were effective.   If future respiratory infection pandemics emerge these findings highlight the value of working from home, using forms of transport that minimise exposure to others, minimising exposure to shops and restricting non-essential activities

    Characterisation of fibroblast-like synoviocytes from a murine model of joint inflammation

    Get PDF
    INTRODUCTION: Fibroblast-like synoviocytes (FLS) play a central role in defining the stromal environment in inflammatory joint diseases. Despite a growing use of FLS isolated from murine inflammatory models, a detailed characterisation of these cells has not been performed. METHODS: In this study, FLS were isolated from inflamed joints of mice expressing both the T cell receptor transgene KRN and the MHC class II molecule Ag7 (K/BxN mice) and their purity in culture determined by immunofluorescence and real-time reverse transcription polymerase chain reaction (real-time RT-PCR). Basal expression of proinflammatory genes was determined by real-time RT-PCR. Secreted interleukin 6 (IL-6) was measured by enzyme-linked immunosorbent assay (ELISA), and its regulation by tumor necrosis factor-alpha (TNF-α and corticosterone (the major glucocorticoid in rodents) measured relative to other mesenchymal cell populations. RESULTS: Purity of FLS culture was identified by positive expression of fibronectin, prolyl 4-hydroxylase, cluster of differentiation 90.2 (CD90.2) and 248 (CD248) in greater than 98% of the population. Cultured FLS were able to migrate and invade through matrigel, a process enhanced in the presence of TNF-α. FLS isolated from K/BxN mice possessed significantly greater basal expression of the inflammatory markers IL-6, chemokine ligand 2 (CCL-2) and vascular cell adhesion molecule 1 (VCAM-1) when compared to FLS isolated from non-inflamed tissue (IL-6, 3.6 fold; CCL-2, 11.2 fold; VCAM-1, 9 fold; P < 0.05). This elevated expression was abrogated in the presence of corticosterone at 100 nmol/l. TNF-α significantly increased expression of all inflammatory markers to a much greater degree in K/BxN FLS relative to other mesenchymal cell lines (K/BxN; IL-6, 40.8 fold; CCL-2, 1343.2 fold; VCAM-1, 17.8 fold; ICAM-1, 13.8 fold; P < 0.05), with secreted IL-6 mirroring these results (K/BxN; con, 169 ± 29.7 versus TNF-α, 923 ± 378.8 pg/ml/1 × 10(5 )cells; P < 0.05). Dose response experiments confirmed effective concentrations between 10 and 100 nmol/l for corticosterone and 1 and 10 ng/ml for TNF-α, whilst inflammatory gene expression in FLS was shown to be stable between passages four and seven. CONCLUSIONS: This study has established a well characterised set of key inflammatory genes for in vitro FLS culture, isolated from K/BxN mice and non-inflamed wild-type controls. Their response to both pro- and anti-inflammatory signalling has been assessed and shown to strongly resemble that which is seen in human FLS culture. Additionally, this study provides guidelines for the effective characterisation, duration and treatment of murine FLS culture

    Cross-talk between 1,25-dihydroxyvitamin D-3 and Transforming Growth Factor-beta Signaling requires Binding of VDR and Smad3 Proteins to their cognate DNA Recognition Elements

    Get PDF
    1,25-Dihydroxyvitamin D-3 (vitamin D) and transforming growth factor-beta (TGF-beta) regulate diverse biological processes including cell proliferation and differentiation through modulation of the expression of target genes. Members of the Smad family of proteins function as effecters of TGF-beta signaling pathways whereas the vitamin D receptor (VDR) confers vitamin D signaling. We investigated the molecular mechanisms by which TGF-beta and vitamin D signaling pathways interact in the regulation of the human osteocalcin promoter. Synergistic activation of the osteocalcin gene promoter by TGF-beta and vitamin D was observed in transient transfection experiments. However, in contrast to a previous report by Yanagisawa, J., Yanagi, Y., Masuhiro, Y., Suzawa, M., Watanabe, M., Kashiwagi, K., Toriyabe, T., Rawabata, M., Miyazono, K., and Kato, S. (1999) Science, 283, 1317-1321, synergistic activation was not detectable when the osteocalcin vitamin D response element (VDRE) alone was linked to a heterologous promoter. Inclusion of the Smad binding elements (SBEs) with the VDRE in the heterologous promoter restored synergistic activation. Furthermore, this synergy was dependent on the spacing between VDRE and SBEs. The Smad3-Smad4 heterodimer was found to bind in gel shift assay to two distinct DNA segments of the osteocalcin promoter: -1030 to -989 (SBE3) and -418 to -349 (SBE1). Deletion of SBE1, which is proximal to the VDRE, brit not the distal SBE3 in this promoter reporter abolished TGF-beta responsiveness and eliminated synergistic co-activation with vitamin D. Thus the molecular mechanism, whereby Smad3 and VDR mediate cross-talk between the TGF-beta acid vitamin D signaling pathways, requires both a VDRE and a SBE located in close proximity to the target promoter

    Full-length human placental sFlt-1-e15a isoform induces distinct maternal phenotypes of preeclampsia in mice

    Get PDF
    <div><p>Objective</p><p>Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring.</p><p>Methods</p><p>Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia.</p><p>Results</p><p>Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10<sup>-2</sup>; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10<sup>-2</sup>). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR).</p><p>Conclusions</p><p>A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the <i>in vivo</i> pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.</p></div

    Comparing Notes: Recording and Criticism

    Get PDF
    This chapter charts the ways in which recording has changed the nature of music criticism. It both provides an overview of the history of recording and music criticism, from the advent of Edison’s Phonograph to the present day, and examines the issues arising from this new technology and the consequent transformation of critical thought and practice

    Co-targeting of convergent nucleotide biosynthetic pathways for leukemia eradication

    Full text link
    Pharmacological targeting of metabolic processes in cancer must overcome redundancy in biosynthetic pathways. Deoxycytidine (dC) triphosphate (dCTP) can be produced both by the de novo pathway (DNP) and by the nucleoside salvage pathway (NSP). However, the role of the NSP in dCTP production and DNA synthesis in cancer cells is currently not well understood. We show that acute lymphoblastic leukemia (ALL) cells avoid lethal replication stress after thymidine (dT)-induced inhibition of DNP dCTP synthesis by switching to NSP-mediated dCTP production. The metabolic switch in dCTP production triggered by DNP inhibition is accompanied by NSP up-regulation and can be prevented using DI-39, a new high-affinity small-molecule inhibitor of the NSP rate-limiting enzyme dC kinase (dCK). Positron emission tomography (PET) imaging was useful for following both the duration and degree of dCK inhibition by DI-39 treatment in vivo, thus providing a companion pharmacodynamic biomarker. Pharmacological co-targeting of the DNP with dT and the NSP with DI-39 was efficacious against ALL models in mice, without detectable host toxicity. These findings advance our understanding of nucleotide metabolism in leukemic cells, and identify dCTP biosynthesis as a potential new therapeutic target for metabolic interventions in ALL and possibly other hematological malignancies

    Wider Still and Wider: British Music Criticism since the Second World War

    Get PDF
    This chapter provides the first historical examination of music criticism in Britain since the Second World War. In the process, it also challenges the simplistic prevailing view of this being a period of decline from a golden age in music criticism

    Stop the Press? The Changing Media of Music Criticism

    Get PDF

    Effects of continuous activation of vitamin D and Wnt response pathways on osteoblastic proliferation and differentiation

    No full text
    The Wnt pathway regulates cell proliferation and differentiation in development and disease, with a number of recent reports linking Wnt to control of osteoblast differentiation and bone mass. There is also accumulating evidence for interaction between the Wnt and nuclear receptor (NR)-mediated control pathways in non-osseous tissues. Calcitriol (1,25D3), which is the active hormonal ligand for the vitamin D receptor (VDR), a member of the NR superfamily, induces osteoblastic cell cycle arrest and expression of genes involved in matrix mineralization in vitro, with over-expression of VDR in mature osteoblasts increasing bone mass in mice. To determine whether the vitamin D and Wnt control pathways interact in osteoblastic regulation, we investigated the treatment effects of 1,25D3 and/or lithium chloride (LiCl), which mimics canonical Wnt pathway activation, on osteoblast proliferation and differentiation. Treatments were initiated at various stages in differentiating cultures of the MC3T3-E1 osteoprogenitor cell line. Treatment of subconfluent cultures (day 1) with either agent transiently increased cell proliferation but decreased viable cell number, with additive inhibition after combined treatment. Interestingly, although early response patterns of alkaline phosphatase activity to 1,25D3 and LiCl were opposite, mineralized nodule formation was virtually abolished by either treatment initiated at day 1 and remained very low after initiating treatments at matrix-formation stage (day 6). By contrast, mineralized nodule formation was substantial but reduced if 1,25D3 and/or LiCl treatment was initiated at mineralization onset (day 13). Osteocalcin production was reduced by all treatments at all time points. Thus, vitamin D and/or canonical Wnt pathway activation markedly reduced mineralization, with additive inhibitory effects on viable cell number. The strength of the response was dependent on the stage of differentiation at treatment initiation. Importantly, the inhibitory effect of LiCl in this committed osteoblastic cell line contrasts with the stimulatory effects of genetic Wnt pathway activation in human and mouse bone tissue. This is consistent with the anabolic Wnt response occurring at a stage prior to the mature osteoprogenitor in the intact skeleton and suggests that prolonged or repeated activation of the canonical Wnt response in committed cells may have an inhibitory effect on osteoblast differentiation and function

    Identity change among smokers and ex-smokers: Findings from the ITC Netherlands survey

    No full text
    Successful smoking cessation appears to be facilitated by identity change, that is, when quitting or nonsmoking becomes part of smokers' and ex-smokers' self-concepts. The current longitudinal study is the first to examine how identity changes over time among smokers and ex-smokers and whether this can be predicted by socioeconomic status (SES) and psychosocial factors (i.e., attitude, perceived health damage, social norms, stigma, acceptance, self-evaluative emotions, health worries, expected social support). We examined identification with smoking (i.e., smoker self-identity) and quitting (i.e., quitter self-identity) among a large sample of smokers (n = 742) and ex-smokers (n = 201) in a cohort study with yearly measurements between 2009 and 2014. Latent growth curve modeling was used as an advanced statistical technique. As hypothesized, smokers perceived themselves more as smokers and less as quitters than do ex-smokers, and identification with smoking increased over time among smokers and decreased among ex-smokers. Furthermore, psychosocial factors predicted baseline identity and identity development. Socioeconomic status (SES) was particularly important. Specifically, lower SES smokers and lower SES ex-smokers identified more strongly with smoking, and smoker and quitter identities were more resistant to change among lower SES groups. Moreover, stronger proquitting social norms were associated with increasing quitter identities over time among smokers and ex-smokers and with decreasing smoker identities among ex-smokers. Predictors of identity differed between smokers and ex-smokers. Results suggest that SES and proquitting social norms should be taken into account when developing ways to facilitate identity change and, thereby, successful smoking cessation.status: publishe
    corecore