3,785 research outputs found

    Clifford geometric parameterization of inequivalent vacua

    Full text link
    We propose a geometric method to parameterize inequivalent vacua by dynamical data. Introducing quantum Clifford algebras with arbitrary bilinear forms we distinguish isomorphic algebras --as Clifford algebras-- by different filtrations resp. induced gradings. The idea of a vacuum is introduced as the unique algebraic projection on the base field embedded in the Clifford algebra, which is however equivalent to the term vacuum in axiomatic quantum field theory and the GNS construction in C^*-algebras. This approach is shown to be equivalent to the usual picture which fixes one product but employs a variety of GNS states. The most striking novelty of the geometric approach is the fact that dynamical data fix uniquely the vacuum and that positivity is not required. The usual concept of a statistical quantum state can be generalized to geometric meaningful but non-statistical, non-definite, situations. Furthermore, an algebraization of states takes place. An application to physics is provided by an U(2)-symmetry producing a gap-equation which governs a phase transition. The parameterization of all vacua is explicitly calculated from propagator matrix elements. A discussion of the relation to BCS theory and Bogoliubov-Valatin transformations is given.Comment: Major update, new chapters, 30 pages one Fig. (prev. 15p, no Fig.

    Clifford Algebraic Remark on the Mandelbrot Set of Two--Component Number Systems

    Full text link
    We investigate with the help of Clifford algebraic methods the Mandelbrot set over arbitrary two-component number systems. The complex numbers are regarded as operator spinors in D\times spin(2) resp. spin(2). The thereby induced (pseudo) normforms and traces are not the usual ones. A multi quadratic set is obtained in the hyperbolic case contrary to [1]. In the hyperbolic case a breakdown of this simple dynamics takes place.Comment: LaTeX, 27 pages, 6 fig. with psfig include
    • …
    corecore