161 research outputs found

    Toxoplasma gondii is not an important contributor to poor reproductive performance of primiparous ewes from southern Australia: A prospective cohort study

    Get PDF
    Background Toxoplasma gondii causes reproductive losses in sheep worldwide, including Australia. The reproductive performance of primiparous ewes is typically lower than for mature, multiparous ewes, and younger ewes are more likely to be immunologically naïve and therefore more susceptible to reproductive disease if T. gondii infection occurs during pregnancy. The aim of this study was to assess the impact of infection with T. gondii on the reproductive performance of primiparous ewes in southern Australia using a prospective cohort study. This will inform the need for targeted control strategies for T. gondii in Australian sheep. Results Toxoplasma gondii seropositivity using indirect ELISA was detected at 16/28 farms located across southern Australia. Apparent seropositivity to T. gondii was lower in primiparous ewes (1.1, 95% confidence interval (CI) 0.6, 1.8) compared to mature, multiparous ewes (8.1, 95% CI 6.0, 10.5; P < 0.001). Toxoplasma gondii seroconversion during the gestation and lambing period was confirmed for 11/1097 (1.0, 95% CI 0.5, 1.7) of pregnant primiparous ewes that failed to raise a lamb, and 1/161 (0.6, 95% CI 0.1, 2.9) primiparous ewes with confirmed mid-pregnancy abortion. Conclusions Low frequency of detection of T. gondii seroconversion during gestation and low frequency of seropositivity to T. gondii suggests that toxoplasmosis was not an important contributor to reproductive losses in primiparous ewes on farms located over a wide geographical area in southern Australia

    An optimization principle for deriving nonequilibrium statistical models of Hamiltonian dynamics

    Full text link
    A general method for deriving closed reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. As in standard projection operator methods, a set of resolved variables is selected to capture the slow, macroscopic behavior of the system, and the family of quasi-equilibrium probability densities on phase space corresponding to these resolved variables is employed as a statistical model. The macroscopic dynamics of the mean resolved variables is determined by optimizing over paths of these probability densities. Specifically, a cost function is introduced that quantifies the lack-of-fit of such paths to the underlying microscopic dynamics; it is an ensemble-averaged, squared-norm of the residual that results from submitting a path of trial densities to the Liouville equation. The evolution of the macrostate is estimated by minimizing the time integral of the cost function. The value function for this optimization satisfies the associated Hamilton-Jacobi equation, and it determines the optimal relation between the statistical parameters and the irreversible fluxes of the resolved variables, thereby closing the reduced dynamics. The resulting equations for the macroscopic variables have the generic form of governing equations for nonequilibrium thermodynamics, and they furnish a rational extension of the classical equations of linear irreversible thermodynamics beyond the near-equilibrium regime. In particular, the value function is a thermodynamic potential that extends the classical dissipation function and supplies the nonlinear relation between thermodynamics forces and fluxes

    Variants in ADRB1 and CYP2C9: Association with Response to Atenolol and Losartan in Marfan Syndrome

    Get PDF
    Objective: To test whether variants in ADRB1 and CYP2C9 genes identify subgroups of individuals with differential response to treatment for Marfan syndrome through analysis of data from a large, randomized trial. Study design: In a subset of 250 white, non-Hispanic participants with Marfan syndrome in a prior randomized trial of atenolol vs losartan, the common variants rs1801252 and rs1801253 in ADRB1 and rs1799853 and rs1057910 in CYP2C9 were analyzed. The primary outcome was baseline-adjusted annual rate of change in the maximum aortic root diameter z-score over 3 years, assessed using mixed effects models. Results: Among 122 atenolol-assigned participants, the 70 with rs1801253 CC genotype had greater rate of improvement in aortic root z-score compared with 52 participants with CG or GG genotypes (Time × Genotype interaction P = .005, mean annual z-score change ± SE -0.20 ± 0.03 vs -0.09 ± 0.03). Among participants with the CC genotype in both treatment arms, those assigned to atenolol had greater rate of improvement compared with the 71 of the 121 assigned to losartan (interaction P = .002; -0.20 ± 0.02 vs -0.07 ± 0.02; P < .001). There were no differences in atenolol response by rs1801252 genotype or in losartan response by CYP2C9 metabolizer status. Conclusions: In this exploratory study, ADRB1-rs1801253 was associated with atenolol response in children and young adults with Marfan syndrome. If these findings are confirmed in future studies, ADRB1 genotyping has the potential to guide therapy by identifying those who are likely to have greater therapeutic response to atenolol than losartan

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: A systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods: We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings: Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation: Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding: Bill & Melinda Gates Foundation

    Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at Ebeam =4 TeV

    Get PDF
    Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the \textscFluka Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared quantitatively with data. Through these comparisons the origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates that a good understanding of the origin of BIB has been reached

    Narcolepsy and adjuvanted pandemic influenza A (H1N1) 2009 vaccines – Multi-country assessment

    Get PDF
    Background: In 2010, a safety signal was detected for narcolepsy following vaccination with Pandemrix, an AS03-adjuvanted monovalent pandemic H1N1 influenza (pH1N1) vaccine. To further assess a possible association and inform policy on future use of adjuvants, we conducted a multi-country study of narcolepsy and adjuvanted pH1N1 vaccines. Methods: We used electronic health databases to conduct a dynamic retrospective cohort study to assess narcolepsy incidence rates (IR) before and during pH1N1 virus circulation, and after pH1N1 vaccination campaigns in Canada, Denmark, Spain, Sweden, Taiwan, the Netherlands, and the United Kingdom. Using a case-control study design, we evaluated the risk of narcolepsy following AS03- and MF59-adjuvanted pH1N1 vaccines in Argentina, Canada, Spain, Switzerland, Taiwan, and the Netherlands. In the Netherlands, we also conducted a case-coverage study in children born between 2004 and 2009. Results: No changes in narcolepsy IRs were observed in any periods in single study sites except Sweden and Taiwan; in Taiwan incidence increased after wild-type pH1N1 virus circulation and in Sweden (a previously identified signaling country), incidence increased after the start of pH1N1 vaccination. No association was observed for Arepanrix-AS03 or Focetria-MF59 adjuvanted pH1N1 vaccines and narcolepsy in children or adults in the case-control study nor for children born between 2004 and 2009 in the Netherlands case-coverage study for Pandemrix-AS03. Conclusions: Other than elevated narcolepsy IRs in the period after vaccination campaigns in Sweden, we did not find an association between AS03- or MF59-adjuvanted pH1N1 vaccines and narcolepsy in children or adults in the sites studied, although power to evaluate the AS03-adjuvanted Pandemrix brand vaccine was limited in our study

    Neuroimaging-based classification of PTSD using data-driven computational approaches: a multisite big data study from the ENIGMA-PGC PTSD consortium

    Get PDF
    Background: Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. Methods: We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. Results: We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for D-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. Conclusion: These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.Stress-related psychiatric disorders across the life spa

    Pleiotropy among common genetic loci identified for cardiometabolic disorders and C-reactive protein.

    Get PDF
    Pleiotropic genetic variants have independent effects on different phenotypes. C-reactive protein (CRP) is associated with several cardiometabolic phenotypes. Shared genetic backgrounds may partially underlie these associations. We conducted a genome-wide analysis to identify the shared genetic background of inflammation and cardiometabolic phenotypes using published genome-wide association studies (GWAS). We also evaluated whether the pleiotropic effects of such loci were biological or mediated in nature. First, we examined whether 283 common variants identified for 10 cardiometabolic phenotypes in GWAS are associated with CRP level. Second, we tested whether 18 variants identified for serum CRP are associated with 10 cardiometabolic phenotypes. We used a Bonferroni corrected p-value of 1.1×10-04 (0.05/463) as a threshold of significance. We evaluated the independent pleiotropic effect on both phenotypes using individual level data from the Women Genome Health Study. Evaluating the genetic overlap between inflammation and cardiometabolic phenotypes, we found 13 pleiotropic regions. Additional analyses showed that 6 regions (APOC1, HNF1A, IL6R, PPP1R3B, HNF4A and IL1F10) appeared to have a pleiotropic effect on CRP independent of the effects on the cardiometabolic phenotypes. These included loci where individuals carrying the risk allele for CRP encounter higher lipid levels and risk of type 2 diabetes. In addition, 5 regions (GCKR, PABPC4, BCL7B, FTO and TMEM18) had an effect on CRP largely mediated through the cardiometabolic phenotypes. In conclusion, our results show genetic pleiotropy among inflammation and cardiometabolic phenotypes. In addition to reverse causation, our data suggests that pleiotropic genetic variants partially underlie the association between CRP and cardiometabolic phenotypes

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme
    corecore