1,238 research outputs found

    Systematic effects from black hole-neutron star waveform model uncertainties on the neutron star equation of state

    Get PDF
    We identify various contributors of systematic effects in the measurement of the neutron star (NS) tidal deformability and quantify their magnitude for several types of neutron star - black hole (NSBH) binaries. Gravitational waves from NSBH mergers contain information about the components' masses and spins as well as the NS equation of state. Extracting this information requires comparison of the signal in noisy detector data with theoretical templates derived from some combination of post-Newtonian (PN) approximants, effective one-body (EOB) models and %analytic fits to numerical relativity (NR) simulations. The accuracy of these templates is limited by errors in the NR simulations, by the approximate nature of the PN/EOB waveforms, and by the hybridization procedure used to combine them. In this paper, we estimate the impact of these errors by constructing and comparing a set of PN-NR hybrid waveforms, for the first time with NR waveforms from two different codes, namely, SpEC and SACRA, for such systems. We then attempt to recover the parameters of the binary using two non-precessing template approximants. We find that systematic errors are too large for tidal effects to be accurately characterized for any realistic NS equation of state model. We conclude that NSBH waveform models must be significantly improved if they are to be useful for the extraction of NS equation of state information or even for distinguishing NSBH systems from binary black holes

    Discovery and Synthesis of Caracolamide A, an Ion Channel Modulating Dichlorovinylidene Containing Phenethylamide from a Panamanian Marine Cyanobacterium cf. Symploca Species

    Get PDF
    A recent untargeted metabolomics investigation into the chemical profile of 10 organic extracts from cf. Symploca spp. revealed several interesting chemical leads for further natural product drug discovery. Subsequent targetdirected isolation efforts with one of these, a Panamanian marine cyanobacterium cf. Symploca sp., yielded a phenethylamide metabolite that terminates in a relatively rare gemdichlorovinylidene moiety, caracolamide A (1), along with a known isotactic polymethoxy-1-alkene (2). Detailed NMR and HRESIMS analyses were used to determine the structures of these molecules, and compound 1 was confirmed by a threestep synthesis. Pure compound 1 was shown to have in vitro calcium influx and calcium channel oscillation modulatory activity when tested as low as 10 pM using cultured murine cortical neurons, but was not cytotoxic to NCI-H460 human non-small-cell lung cancer cells in vitro (IC50 > 10 μM).A recent untargeted metabolomics investigation into the chemical profile of 10 organic extracts from cf. Symploca spp. revealed several interesting chemical leads for further natural product drug discovery. Subsequent targetdirected isolation efforts with one of these, a Panamanian marine cyanobacterium cf. Symploca sp., yielded a phenethylamide metabolite that terminates in a relatively rare gemdichlorovinylidene moiety, caracolamide A (1), along with a known isotactic polymethoxy-1-alkene (2). Detailed NMR and HRESIMS analyses were used to determine the structures of these molecules, and compound 1 was confirmed by a threestep synthesis. Pure compound 1 was shown to have in vitro calcium influx and calcium channel oscillation modulatory activity when tested as low as 10 pM using cultured murine cortical neurons, but was not cytotoxic to NCI-H460 human non-small-cell lung cancer cells in vitro (IC50 > 10 μM)

    AMPNet: Attention as Message Passing for Graph Neural Networks

    Full text link
    Graph Neural Networks (GNNs) have emerged as a powerful representation learning framework for graph-structured data. A key limitation of conventional GNNs is their representation of each node with a singular feature vector, potentially overlooking intricate details about individual node features. Here, we propose an Attention-based Message-Passing layer for GNNs (AMPNet) that encodes individual features per node and models feature-level interactions through cross-node attention during message-passing steps. We demonstrate the abilities of AMPNet through extensive benchmarking on real-world biological systems such as fMRI brain activity recordings and spatial genomic data, improving over existing baselines by 20% on fMRI signal reconstruction, and further improving another 8% with positional embedding added. Finally, we validate the ability of AMPNet to uncover meaningful feature-level interactions through case studies on biological systems. We anticipate that our architecture will be highly applicable to graph-structured data where node entities encompass rich feature-level information.Comment: 16 pages (12 + 4 pages appendix). 5 figures and 7 table

    Systematic effects from black hole-neutron star waveform model uncertainties on the neutron star equation of state

    Get PDF
    We identify various contributors of systematic effects in the measurement of the neutron star (NS) tidal deformability and quantify their magnitude for several types of neutron star—black hole (NSBH) binaries. Gravitational waves from NSBH mergers contain information about the components’ masses and spins as well as the NS equation of state. Extracting this information requires comparison of the signal in noisy detector data with theoretical templates derived from some combination of post-Newtonian (PN) approximants, effective one-body (EOB) models, and numerical relativity (NR) simulations. The accuracy of these templates is limited by errors in the NR simulations, by the approximate nature of the PN/EOB waveforms, and by the hybridization procedure used to combine them. In this paper, we estimate the impact of these errors by constructing and comparing a set of PN-NR hybrid waveforms, for the first time with NR waveforms from two different codes, namely, SpEC and sacra, for such systems. We then attempt to recover the parameters of the binary using two non-precessing template approximants. As expected, these errors have negligible effect on detectability. Mass and spin estimates are moderately affected by systematic errors for near equal-mass binaries, while the recovered masses can be inaccurate at higher mass ratios. Large uncertainties are also found in the tidal deformability Λ , due to differences in PN base models used in hybridization, numerical relativity NR errors, and inherent limitations of the hybridization method. We find that systematic errors are too large for tidal effects to be accurately characterized for any realistic NS equation of state model. We conclude that NSBH waveform models must be significantly improved if they are to be useful for the extraction of NS equation of state information or even for distinguishing NSBH systems from binary black holes

    Spin density wave and superconducting properties of nanoparticle organic conductor assemblies

    Get PDF
    The magnetic susceptibilities of nanoparticle assemblies of two Bechgaard salts (TMTSF)2PF6 and (TMTSF)2ClO4, have been studied vs temperature and magnetic field. In the bulk these materials exhibit a spin density wave formation (TSDW=12K) and superconductivity (Tc=1.2K), respectively. We show from inductive (susceptibility) measurements that the nanoparticle assemblies exhibit ground-state phase transitions similar to those of randomly oriented polycrystalline samples of the parent materials. Resistivity and diamagnetic shielding measurements yield additional information on the functional nanoparticle structure in terms of stoichiometric and nonstoichiometric composition

    The twilight of the Liberal Social Contract? On the Reception of Rawlsian Political Liberalism

    Get PDF
    This chapter discusses the Rawlsian project of public reason, or public justification-based 'political' liberalism, and its reception. After a brief philosophical rather than philological reconstruction of the project, the chapter revolves around a distinction between idealist and realist responses to it. Focusing on political liberalism’s critical reception illuminates an overarching question: was Rawls’s revival of a contractualist approach to liberal legitimacy a fruitful move for liberalism and/or the social contract tradition? The last section contains a largely negative answer to that question. Nonetheless the chapter's conclusion shows that the research programme of political liberalism provided and continues to provide illuminating insights into the limitations of liberal contractualism, especially under conditions of persistent and radical diversity. The programme is, however, less receptive to challenges to do with the relative decline of the power of modern states

    Constitutivism

    Get PDF
    A brief explanation and overview of constitutivism

    Systematic effects from black hole-neutron star waveform model uncertainties on the neutron star equation of state

    Get PDF
    We identify various contributors of systematic effects in the measurement of the neutron star (NS) tidal deformability and quantify their magnitude for several types of neutron star—black hole (NSBH) binaries. Gravitational waves from NSBH mergers contain information about the components’ masses and spins as well as the NS equation of state. Extracting this information requires comparison of the signal in noisy detector data with theoretical templates derived from some combination of post-Newtonian (PN) approximants, effective one-body (EOB) models, and numerical relativity (NR) simulations. The accuracy of these templates is limited by errors in the NR simulations, by the approximate nature of the PN/EOB waveforms, and by the hybridization procedure used to combine them. In this paper, we estimate the impact of these errors by constructing and comparing a set of PN-NR hybrid waveforms, for the first time with NR waveforms from two different codes, namely, SpEC and sacra, for such systems. We then attempt to recover the parameters of the binary using two non-precessing template approximants. As expected, these errors have negligible effect on detectability. Mass and spin estimates are moderately affected by systematic errors for near equal-mass binaries, while the recovered masses can be inaccurate at higher mass ratios. Large uncertainties are also found in the tidal deformability Λ , due to differences in PN base models used in hybridization, numerical relativity NR errors, and inherent limitations of the hybridization method. We find that systematic errors are too large for tidal effects to be accurately characterized for any realistic NS equation of state model. We conclude that NSBH waveform models must be significantly improved if they are to be useful for the extraction of NS equation of state information or even for distinguishing NSBH systems from binary black holes
    corecore