29 research outputs found

    Portrayals of the Holocaust in English history textbooks, 1991–2016: continuities, challenges and concerns

    Get PDF
    This study examines portrayals of the Holocaust in a sample of 21 secondary school history textbooks published in England between 1991 and 2016. Evaluated against internationally recognized criteria and guidelines, the content of most textbooks proved very problematic. Typically, textbooks failed to provide clear chronological and geographical frameworks and adopted simplistic Hitler-centric, perpetrator-oriented narratives. Furthermore, textbooks paid limited attention to pre-war Jewish life, the roots of antisemitism, the complicity of local populations and collaborationist regimes, and the impact of the Holocaust on people across Europe. Based on these critical findings, the article concludes by offering initial recommendations for textbook improvement

    A new view of energetic particles from stream interaction regions observed by Parker Solar Probe

    No full text
    Early observations from the first orbit of Parker Solar Probe (PSP) show recurrent stream interaction regions that form close to the Sun. Energetic particle enhancements were observed on the 320th-326th day of the year 2018, which corresponds to ~1-7 days after the passage of the stream interface between faster and slower solar wind. Energetic particles stream into the inner heliosphere to the PSP spacecraft near 0.33 au (71 solar radii) where they are measured by the Integrated Science Investigation of the Sun (IS⊙ IS). The large 6-day time interval over which energetic particles are observed after the stream passage provides a unique perspective on the development of stream interactions within the heliosphere. The long duration of energetic particle enhancements suggests that particles stream in through the inner heliosphere more directly along magnetic field lines that form a sub-Parker spiral structure due to magnetic footpoint motion at the Sun and shearing of the magnetic field in the rarefaction region behind the stream interface. The strong build-up of energetic particle fluxes in the first 3 days after the passage of the stream interface indicates that suprathermal populations are enhanced near the interaction region through compression or other acceleration processes in addition to being diffusively accelerated. The early increases in energetic particle fluxes (in the first 3 days) in the formation of these events allows for the characterization of the acceleration associated with these suprathermal seed populations. Thus, we show that the time history of energetic particle fluxes observed by IS⊙ IS provides a new view of particle acceleration at stream interaction regions throughout the inner heliosphere. © ESO 2021.Immediate accessThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors

    Get PDF
    Mapping and monitoring soil spatial variability is particularly problematic for temporally and spatially dynamic properties such as soil salinity. The tools necessary to address this classic problem only reached maturity within the past 2 decades to enable field- to regional-scale salinity assessment of the root zone, including GPS, GIS, geophysical techniques involving proximal and remote sensors, and a greater understanding of apparent soil electrical conductivity (ECa) and multi- and hyperspectral imagery. The concurrent development and application of these tools have made it possible to map soil salinity across multiple scales, which back in the 1980s was prohibitively expensive and impractical even at field scale. The combination of ECa-directed soil sampling and remote imagery has played a key role in mapping and monitoring soil salinity at large spatial extents with accuracy sufficient for applications ranging from field-scale site-specific management to statewide water allocation management to control salinity within irrigation districts. The objective of this paper is: (i) to present a review of the geophysical and remote imagery techniques used to assess soil salinity variability within the root zone from field to regional scales; (ii) to elucidate gaps in our knowledge and understanding of mapping soil salinity; and (iii) to synthesize existing knowledge to give new insight into the direction soil salinity mapping is heading to benefit policy makers, land resource managers, producers, agriculture consultants, extension specialists, and resource conservation field staff. The review covers the need and justification for mapping and monitoring salinity, basic concepts of soil salinity and its measurement, past geophysical and remote imagery research critical to salinity assessment, current approaches for mapping salinity at different scales, milestones in multi-scale salinity assessment, and future direction of field- to regional-scale salinity assessment

    EN2 in Prostate Cancer.

    No full text
    Despite extensive efforts to identify a clinically useful diagnostic biomarker in prostate cancer, no new test has been approved by regulatory authorities. As a result, this unmet need has shifted to biomarkers that additionally indicate presence or absence of "significant" disease. EN2 is a homeodomain-containing transcription factor secreted by prostate cancer into the urine and can be detected by enzyme-linked immunoassay. EN2 may be an ideal biomarker because normal prostate tissue and benign prostatic hypertrophic cells do not secrete EN2. This review discusses the enormous potential of EN2 to address this unmet need and provide the urologist with a simple, inexpensive, and reliable prostate cancer biomarker
    corecore