1,775 research outputs found

    New SU(1, 1) Position-Dependent Effective Mass Coherent States for the Generalized Shifted Harmonic Oscillator

    Full text link
    A new SU(1, 1) position-dependent effective mass coherent states (PDEM CS) related to the shifted harmonic oscillator (SHO) are deduced. This is accomplished by applying a similarity transformation to the generally deformed oscillator algebra (GDOA) generators for PDEM system and construct a new set of operators which close the su(1, 1) Lie algebra, being the PDEM CS of the basis for its unitary irreducible representation. The residual potential is associated to the SHO. From the Lie algebra generators, we evaluate the uncertainty relationship for a position and momentum-like operators in the PDEM CS and show that it is minimized in the sense of Barut-Girardello CS. We prove that the deduced PDEM CS preserve the same analytical form than those of Glauber states. We show that the probability density of dynamical evolution in the PDEM CS oscillates back and forth as time goes by and behaves as classical wave packet.Comment: 13 page

    Bender-Dunne Orthogonal Polynomials, Quasi-Exact Solvability and Asymptotic Iteration Method for Rabi Hamiltonian

    Full text link
    We present a method for obtaining the quasi-exact solutions of the Rabi Hamiltonian in the framework of the asymptotic iteration method. The energy eigenvalues, the eigenfunctions and the associated Bender-Dunne orthogonal polynomials are deduced. The latter prove to have a nonpositive definite norm.Comment: 10 page

    Tilted Micro Air Jet for Flow Control

    Full text link
    In this paper, we present an interesting method to microfabricate a tilted micro air jet generator. We used the well-know deep reactive ion etching (DRIE) technique in order to realize in a silicon substrate a double side etching. For aircraft and cars, micro air jets will take an important place for fluid control. Micro air jets are characterized by their speed, frequency and tilt. Usually, this micro air jets are produced by fluidic microsystems. We presented experimental results about micro tilted air jets. A comparison between finite element method simulation, theory and experimental results are performed to define the microsystem geometry leading a specific air jet angle

    Contribution of the subthalamic nucleus to visually guided locomotion

    Full text link
    Les ganglions de la base (GB) jouent un rôle important dans le contrôle locomoteur. Ceci est illustré par les troubles locomoteurs dont souffrent les patients atteints de maladies dégénératives qui affectent les GB, telles que la maladie de Parkinson, caractérisées par de petits pas lents et traînants, ainsi qu’un gel de la marche (freezing of gait). Une structure centrale dans les GB est le noyau sous-thalamique (NST), de par son rôle de structure d’entrée et ses projections vers le globus pallidus. Cependant, la nature de la contribution du NST au contrôle de la locomotion, ainsi que les caractéristiques de son activité cellulaire durant la marche, sont peu connues. Afin de mieux comprendre cette contribution, nous avons examiné les propriétés de l’activité neuronale du NST lors de la locomotion non-obstruée et celle sous guidage visuel. Ainsi, nous avons effectué des enregistrements neuronaux chez un chat intact, entraîné à marcher régulièrement sur un tapis roulant et à franchir des obstacles se déplaçant à la même vitesse. Nous avons enregistré 40 cellules montrant une activité reliée au movement du membre antérieur, dont 30 ont montré une activité phasique au cours de la locomotion non obstruée liée aux différentes phases du cycle de la marche, principalement la phase de balancement. Au cours de la modification volontaire de la marche, un groupe de 37/40 cellules, incluant certaines qui étaient modulées pendant la locomotion non-obstruée, ont changé leur fréquence de décharge par rapport à l’obstacle. Ces changement étaient principalement des augmentations de fréquence, mais parfois des diminutions ou une diminution suivie d’une augmentation. Ces modifications se produisaient soit avant l’enjambement de l’obstacle (step-advanced), soit lors de l’enjambement de l’obstacle (step-related). L’activité des cellules step-advanced était indépendante des membres (limb-independent), tandis que celle des cellules step-related était spécifique aux membres (limb-dependent). Cette étude est la première à examiner les caractéristiques de décharge du NST lors de la marche et montre que cette structure contribue au contrôle de la locomotion non obstruée ainsi que la modification volontaire de la marche, en jouant un rôle dans la planification et l’exécution de cette dernière.The Basal ganglia (BG) plays an important role in locomotor control. This is emphasized by the impaired walking of patients with neurodegenerative disorders that affect the BG such as Parkinson’s disease. One important structure in the BG is the subthalamic nucleus (STN), which acts as an input structure for the BG and projects to its output structures. Although the STN has been shown to display movement-related activity during reaching, the nature of its contribution to the control of locomotion, together with the characteristics of its neural activity during locomotion, is poorly known. In order to better understand this contribution, we examined the properties of the neural activity in the STN during unobstructed and visually guided locomotion. To do so, we recorded single neurons in an intact cat trained to walk steadily on a treadmill and to step over obstacles attached to the treadmill belt and moving at the same speed. We recorded 40 neurons which activity was related to the movement of the forelimb during the task. We found that during unobstructed locomotion, many of these cells (30/40) showed phasic step-by-step modulation of their activity pattern, mostly during the swing phase. Most of these swing-related cells discharged throughout the swing phase with no relationship to changes in the pattern of different muscle groups. During voluntary modifications of gait, 37/40 cells, including both cells that were and were not modulated during unobstructed locomotion, changed their firing rate in relationship to the step over the obstacle. The changes observed were mostly increases of activity, but a few cells showed decreases of activity and some showed a decrease followed by an increase of activity. These changes occurred either before the modified step and were classified as step-advanced activity, or they occurred during the modified step and were classified as step-related activity. Step advanced cells mostly showed limb-independent activity, while step related cells showed limb-specific activity. This is the first detailed account of the contribution of the STN to the control of locomotion and our results indicate that the STN is involved in the control of both unobstructed and visually guided locomotion. The results suggest that during unobstructed locomotion, the STN contributes to the general control of the limb trajectory and to both the planning and execution of voluntary changes of gait

    Application of Traditional Climate Sensitive Building Design Techniques to Modern Housing Programmes in the Constantine Region of Algeria

    Get PDF
    In common with most developing countries and as a result of an increasing housing shortage, Algeria is undertaking a rapid building development which neglects the climatic aspects and comfort of its inhabitants. The objective of this work is to investigate and compare the thermal performance of both traditional and modern housing types to define the underlying design features that can usefully be integrated with future housing programmes. Initially an appraisal of current need and policy within an historical framework established that trends towards medium and high rise prefabricated housing provide a failure in environmental conditions and a steady increase in domestic energy usage, Climate analysis has verified that the main problem for building in Constantine lies in summer months where strong irradiation prevails, especially on the roof. Solar irradiation values have also been correlated to other climatic features, and representative hourly data have been compiled for use in dynamic thermal simulation. It was also established that solar irradiation would have an effective contribution in winter, where heating is still of importance when calculated as a proportion of disposable income. The thermal analysis, part steady-state and part dynamic, has shown that a traditional courtyard house compared to a typical modern flat, uses approximately 50% less energy for both heating and cooling; and that the courtyard form is still an efficient architectural concept in both the house and urban context. Thermo-physical characteristics of the building envelope and their role in controlling indoor environment are appraised. Further optimisaiton of multi-layer thermal diffusivity is explored in relation to modern materials, with relevance to either housing model, but particularly roof construction in the case of the courtyard type. The conclusion of this work is that the courtyard house form provides many passive solar heating/cooling features that can be evolved in a modern context, to achieve economically compatible thermal strategies for future housing
    • …
    corecore