35 research outputs found

    The fusion crust of the Winchcombe meteorite: A preserved record of atmospheric entry processes

    Get PDF
    Fusion crusts form during the atmospheric entry heating of meteorites and preserve a record of the conditions that occurred during deceleration in the atmosphere. The fusion crust of the Winchcombe meteorite closely resembles that of other stony meteorites, and in particular CM2 chondrites, since it is dominated by olivine phenocrysts set in a glassy mesostasis with magnetite, and is highly vesicular. Dehydration cracks are unusually abundant in Winchcombe. Failure of this weak layer is an additional ablation mechanism to produce large numbers of particles during deceleration, consistent with the observation of pulses of plasma in videos of the Winchcombe fireball. Calving events might provide an observable phenomenon related to meteorites that are particularly susceptible to dehydration. Oscillatory zoning is observed within olivine phenocrysts in the fusion crust, in contrast to other meteorites, perhaps owing to temperature fluctuations resulting from calving events. Magnetite monolayers are found in the crust, and have also not been previously reported, and form discontinuous strata. These features grade into magnetite rims formed on the external surface of the crust and suggest the trapping of surface magnetite by collapse of melt. Magnetite monolayers may be a feature of meteorites that undergo significant degassing. Silicate warts with dendritic textures were observed and are suggested to be droplets ablated from another stone in the shower. They, therefore, represent the first evidence for intershower transfer of ablation materials and are consistent with the other evidence in the Winchcombe meteorite for unusually intense gas loss and ablation, despite its low entry velocity

    Winchcombe: an example of rapid terrestrial alteration of a CM chondrite

    Get PDF
    Winchcombe is a CM chondrite that fell in England on February 28, 2021. Its rapid retrieval was well characterized. Within two polished sections of Winchcombe, terrestrial phases were observed. Calcite and calcium sulfates were found in a sample recovered from a field on March 6, 2021, and halite was observed on a sample months after its recovery from a driveway on March 2, 2021. These terrestrial phases were characterized by scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy. Calcite veins crosscut the fusion crust and therefore postdate it. The calcite likely precipitated in the damp environment (sheep field) where the meteorite lay for six days prior to its retrieval. The sulfates occur on the edges of the sample and were identified as three minerals: gypsum, bassanite, and anhydrite. Given that the sulfates occur only on the sample's edges, including on top of the fusion crust, they formed after Winchcombe fell. Sulfate precipitation is attributed to the damp fall environment, likely resulted from sulfide-derived H2S reacting with calcite within the meteorite. Halite occurs as euhedral crystals only on the surface of a polished section and exclusively in areas relatively enriched in sodium. It was likely produced by the interaction of the polished rock slice with the humid laboratory air over a period of months. The sulfates, fusion crust calcite, and halite all post-date Winchcombe's entry into the Earth's atmosphere and showcase how rapidly meteorite falls can be terrestrially altered

    Brecciation at the grain scale within the lithologies of the Winchcombe Mighei-like carbonaceous chondrite

    Get PDF
    The Mighei-like carbonaceous (CM) chondrites have been altered to various extents by water–rock reactions on their parent asteroid(s). This aqueous processing has destroyed much of the primary mineralogy of these meteorites, and the degree of alteration is highly heterogeneous at both the macroscale and nanoscale. Many CM meteorites are also heavily brecciated juxtaposing clasts with different alteration histories. Here we present results from the fine-grained team consortium study of the Winchcombe meteorite, a recent CM chondrite fall that is a breccia and contains eight discrete lithologies that span a range of petrologic subtypes (CM2.0–2.6) that are suspended in a cataclastic matrix. Coordinated multitechnique, multiscale analyses of this breccia reveal substantial heterogeneity in the extent of alteration, even in highly aqueously processed lithologies. Some lithologies exhibit the full range and can comprise nearly unaltered coarse-grained primary components that are found directly alongside other coarse-grained components that have experienced complete pseudomorphic replacement by secondary minerals. The preservation of the complete alteration sequence and pseudomorph textures showing tochilinite–cronstedtite intergrowths are replacing carbonates suggest that CMs may be initially more carbonate rich than previously thought. This heterogeneity in aqueous alteration extent is likely due to a combination of microscale variability in permeability and water/rock ratio generating local microenvironments as has been established previously. Nevertheless, some of the disequilibrium mineral assemblages observed, such as hydrous minerals juxtaposed with surviving phases that are typically more fluid susceptible, can only be reconciled by multiple generations of alteration, disruption, and reaccretion of the CM parent body at the grain scale

    Brecciation at the grain scale within the lithologies of the Winchcombe Mighei‐like carbonaceous chondrite

    Get PDF
    The Mighei‐like carbonaceous (CM) chondrites have been altered to various extents by water–rock reactions on their parent asteroid(s). This aqueous processing has destroyed much of the primary mineralogy of these meteorites, and the degree of alteration is highly heterogeneous at both the macroscale and nanoscale. Many CM meteorites are also heavily brecciated juxtaposing clasts with different alteration histories. Here we present results from the fine‐grained team consortium study of the Winchcombe meteorite, a recent CM chondrite fall that is a breccia and contains eight discrete lithologies that span a range of petrologic subtypes (CM2.0–2.6) that are suspended in a cataclastic matrix. Coordinated multitechnique, multiscale analyses of this breccia reveal substantial heterogeneity in the extent of alteration, even in highly aqueously processed lithologies. Some lithologies exhibit the full range and can comprise nearly unaltered coarse‐grained primary components that are found directly alongside other coarse‐grained components that have experienced complete pseudomorphic replacement by secondary minerals. The preservation of the complete alteration sequence and pseudomorph textures showing tochilinite–cronstedtite intergrowths are replacing carbonates suggest that CMs may be initially more carbonate rich than previously thought. This heterogeneity in aqueous alteration extent is likely due to a combination of microscale variability in permeability and water/rock ratio generating local microenvironments as has been established previously. Nevertheless, some of the disequilibrium mineral assemblages observed, such as hydrous minerals juxtaposed with surviving phases that are typically more fluid susceptible, can only be reconciled by multiple generations of alteration, disruption, and reaccretion of the CM parent body at the grain scale

    The Fusion Crust of the Winchcombe Meteorite: A Preserved Record of Atmospheric Entry Processes

    Get PDF
    Fusion crusts form during the atmospheric entry heating of meteorites and preserve a record of the conditions that occurred during deceleration in the atmosphere. The fusion crust of the Winchcombe meteorite closely resembles those of other stony meteorites, and in particular CM2 chondrites, since it is dominated by olivine phenocrysts set in a glassy mesostasis with magnetite, and is highly vesicular. Dehydration cracks are unusually abundant in Winchcombe. Failure of this weak layer is an additional ablation mechanism to produce large numbers of particles during deceleration, consistent with observation of pulses of plasma in videos of the Winchcombe fireball. Calving events might provide an observable phenomenon related to meteorites that are particularly susceptible to dehydration. Oscillatory zoning is observed within olivine phenocrysts the fusion crust, in contrast to other meteorites, perhaps owing to temperature fluctuations resulting from calving events. Magnetite monolayers are found in the crust, and have also not been previously reported, and form discontinuous strata. These features grade into magnetite-rims formed on the external surface of the crust and suggest trapping of surface magnetite by collapse of melt. Magnetite monolayers may be a feature of meteorites that undergo significant degassing. Silicate warts with dendritic textures were observed and are suggested to be droplets ablated from another stone in the shower. They, therefore, represent the first evidence for inter-shower transfer of ablation materials and are consistent with the other evidence in the Winchcombe meteorite for unusually intense gas loss and ablation, despite its low entry velocity.Output Status: Forthcoming/Available Online Additional co-authors: Christopher Hamann, Lutz Hecht, Laura E. Jenkins, Diane Johnson, Rosie Jones, Ashley J. King, Haithem Mansour, Sarah McMullan, Jennifer T. Mitchell, Gavyn Rollinson, Sara S. Russell, Natasha R. Stephen, Martin D. Suttle, Jon D. Tandy, Patrick Trimby, Eleanor K. Sansom, Vassilia Spathis, Francesca M. Willcocks, Penelope J. Wozniakiewic

    Brecciation at the grain scale within the lithologies of the Winchcombe Mighei-like carbonaceous chondrite

    Get PDF
    The Mighei‐like carbonaceous (CM) chondrites have been altered to various extents by water–rock reactions on their parent asteroid(s). This aqueous processing has destroyed much of the primary mineralogy of these meteorites, and the degree of alteration is highly heterogeneous at both the macroscale and nanoscale. Many CM meteorites are also heavily brecciated juxtaposing clasts with different alteration histories. Here we present results from the fine‐grained team consortium study of the Winchcombe meteorite, a recent CM chondrite fall that is a breccia and contains eight discrete lithologies that span a range of petrologic subtypes (CM2.0–2.6) that are suspended in a cataclastic matrix. Coordinated multitechnique, multiscale analyses of this breccia reveal substantial heterogeneity in the extent of alteration, even in highly aqueously processed lithologies. Some lithologies exhibit the full range and can comprise nearly unaltered coarse‐grained primary components that are found directly alongside other coarse‐grained components that have experienced complete pseudomorphic replacement by secondary minerals. The preservation of the complete alteration sequence and pseudomorph textures showing tochilinite–cronstedtite intergrowths are replacing carbonates suggest that CMs may be initially more carbonate rich than previously thought. This heterogeneity in aqueous alteration extent is likely due to a combination of microscale variability in permeability and water/rock ratio generating local microenvironments as has been established previously. Nevertheless, some of the disequilibrium mineral assemblages observed, such as hydrous minerals juxtaposed with surviving phases that are typically more fluid susceptible, can only be reconciled by multiple generations of alteration, disruption, and reaccretion of the CM parent body at the grain scale

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore