1,105 research outputs found

    Improvement of the sensory and autonomous capability of robots through olfaction: the IRO Project

    Get PDF
    Proyecto de Excelencia Junta de Andalucía TEP2012-530Olfaction is a valuable source of information about the environment that has not been su ciently exploited in mobile robotics yet. Certainly, odor information can contribute to other sensing modalities, e.g. vision, to successfully accomplish high-level robot activities, such as task planning or execution in human environments. This paper describes the developments carried out in the scope of the IRO project, which aims at making progress in this direction by investigating mechanisms that exploit odor information (usually coming in the form of the type of volatile and its concentration) in problems like object recognition and scene-activity understanding. A distinctive aspect of this research is the special attention paid to the role of semantics within the robot perception and decisionmaking processes. The results of the IRO project have improved the robot capabilities in terms of efciency, autonomy and usefulness.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    Artificial Odor Discrimination System using electronic nose and neural networks for the identification of urinary tract infection

    Get PDF
    Current clinical diagnostics are based on biochemical, immunological or microbiological methods. However, these methods are operator dependent, time consuming, expensive and require special skills, and are therefore not suitable for point-of-care testing. Recent developments in gas-sensing technology and pattern recognition methods make electronic nose technology an interesting alternative for medical point-of-care devices. An electronic nose has been used to detect Urinary Tract Infection from 45 suspected cases that were sent for analysis in a UK Public Health Registry. These samples were analysed by incubation in a volatile generation test tube system for 4-5h. Two issues are being addressed, including the implementation of an advanced neural network, based on a modified Expectation Maximisation scheme that incorporates a dynamic structure methodology and the concept of a fusion of multiple classifiers dedicated to specific feature parameters. This study has shown the potential for early detection of microbial ontaminants in urine samples using electronic nose technology

    Electronic Noses Applications in Beer Technology

    Get PDF
    This chapter describes and explains in detail the electronic noses (e-noses) as devices composed of an array of sensors that measure chemical volatile compounds and apply classification or regression algorithms. Then, it reviews the most significant applications of such devices in beer technology, with examples about defect detection, hop classification, or beer classification, among others. After the review, the chapter illustrates two applications from the authors, one about beer classification and another about beer defect detection. Finally, after a comparison with other analytical techniques, the chapter ends with a summary, conclusions, and the compelling future of the e-noses applied to beer technology

    Pairing Neutral Cues with Alcohol Intoxication: New Findings in Executive and Attention Networks

    Get PDF
    Rationale: Alcohol-associated stimuli capture attention, yet drinkers differ in the precise stimuli that become paired with intoxication. Objectives: Extending our prior work to examine the influence of alcoholism risk factors, we paired abstract visual stimuli with intravenous alcohol delivered covertly and examined brain responses to these Pavlovian conditioned stimuli in fMRI when subjects were not intoxicated. Methods: Sixty healthy drinkers performed task-irrelevant alcohol conditioning that presented geometric shapes as conditioned stimuli. Shapes were paired with a rapidly rising alcohol limb (CS+) using intravenous alcohol infusion targeting a final peak breath alcohol concentration of 0.045 g/dL or saline (CS−) infusion at matched rates. On day two, subjects performed monetary delay discounting outside the scanner to assess delay tolerance and then underwent event-related fMRI while performing the same task with CS+, CS−, and an irrelevant symbol. Results: CS+ elicited stronger activation than CS− in frontoparietal executive/attention and orbitofrontal reward-associated networks. Risk factors including family history, recent drinking, sex, and age of drinking onset did not relate to the [CS+ > CS−] activation. Delay-tolerant choice and [CS+ > CS−] activation in right inferior parietal cortex were positively related. Conclusions: Networks governing executive attention and reward showed enhanced responses to stimuli experimentally paired with intoxication, with the right parietal cortex implicated in both alcohol cue pairing and intertemporal choice. While different from our previous study results in 14 men, we believe this paradigm in a large sample of male and female drinkers offers novel insights into Pavlovian processes less affected by idiosyncratic drug associations

    Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Get PDF
    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry

    Sensor characterization for multisensor odor-discrimination system

    Full text link
    In recent years, with the advent of new and cheaper sensors, the use of olfactory systems in homes, industries, and hospitals has a new start. Multisensor systems can improve the ability to distinguish between complex mixtures of volatile substances. To develop multisensor systems that are accurate and reliable, it is important to take into account the anomalies that may arise because of electronic instabilities, types of sensors, and air flow. In this approach, 32 metal oxide semiconductor sensors of 7 different types and operating at different temperatures have been used to develop a multisensor olfactory system. Each type of sensor has been characterized to select the most suitable temperature combinations. In addition, a prechamber has been designed to ensure a good air flow from the sample to the sensing area. The multisensor system has been tested with good results to perform multidimensional information detection of two fruits, based on obtaining sensor matrix data, extracting three features parameters from each sensor curve and using these parameters as the input to a pattern recognition system. (C) 2012 Elsevier B.V. All rights reserved.Cueto Belchí, AD.; Rothpfeffer, N.; Pelegrí Sebastiá, J.; Chilo, J.; García Rodríguez, D.; Sogorb Devesa, TC. (2013). Sensor characterization for multisensor odor-discrimination system. Sensors and Actuators A: Physical. 191:68-72. doi:10.1016/j.sna.2012.11.039S687219

    Meat Quality Assessment by Electronic Nose (Machine Olfaction Technology)

    Get PDF
    Over the last twenty years, newly developed chemical sensor systems (so called “electronic noses”) have made odor analyses possible. These systems involve various types of electronic chemical gas sensors with partial specificity, as well as suitable statistical methods enabling the recognition of complex odors. As commercial instruments have become available, a substantial increase in research into the application of electronic noses in the evaluation of volatile compounds in food, cosmetic and other items of everyday life is observed. At present, the commercial gas sensor technologies comprise metal oxide semiconductors, metal oxide semiconductor field effect transistors, organic conducting polymers, and piezoelectric crystal sensors. Further sensors based on fibreoptic, electrochemical and bi-metal principles are still in the developmental stage. Statistical analysis techniques range from simple graphical evaluation to multivariate analysis such as artificial neural network and radial basis function. The introduction of electronic noses into the area of food is envisaged for quality control, process monitoring, freshness evaluation, shelf-life investigation and authenticity assessment. Considerable work has already been carried out on meat, grains, coffee, mushrooms, cheese, sugar, fish, beer and other beverages, as well as on the odor quality evaluation of food packaging material. This paper describes the applications of these systems for meat quality assessment, where fast detection methods are essential for appropriate product management. The results suggest the possibility of using this new technology in meat handling

    Medical applications of artificial olfactometry

    Get PDF
    The present invention provides methods for detecting the presence of an analyte indicative of various medical conditions, including halitosis, periodontal disease and other diseases are also disclosed
    corecore