
 
 

 
WestminsterResearch 
http://www.wmin.ac.uk/westminsterresearch 
 
Artificial Odour Discrimination System using electronic nose 
and neural networks for the identification of urinary tract 
infection. 
 
Vassilis S. Kodogiannis1 
John N. Lygouras2 
Andrzej Tarczynski3 
Hardial S. Chowdrey4 
 
1School of Informatics, University of Westminster 
2Dept of Electrical & Computer Engineering, Democritus University of Thrace 
3Harrow School of Computer Science, University of Westminster 
4School of Biosciences, University of Westminster 
 
Copyright © [2008] IEEE. Reprinted from the IEEE Transactions on 
Information Technology in Biomedicine, 12 (6). pp. 707-713, November 2008. 
 
This material is posted here with permission of the IEEE. Such permission of 
the IEEE does not in any way imply IEEE endorsement of any of the 
University of Westminster's products or services.  Personal use of this 
material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for 
resale or redistribution to servers or lists, or to reuse any copyrighted 
component of this work in other works must be obtained from the IEEE. By 
choosing to view this document, you agree to all provisions of the copyright 
laws protecting it. 
 
 
The WestminsterResearch online digital archive at the University of Westminster 
aims to make the research output of the University available to a wider audience.  
Copyright and Moral Rights remain with the authors and/or copyright owners. 
Users are permitted to download and/or print one copy for non-commercial private 
study or research.  Further distribution and any use of material from within this 
archive for profit-making enterprises or for commercial gain is strictly forbidden.    
 
 
Whilst further distribution of specific materials from within this archive is forbidden, 
you may freely distribute the URL of the University of Westminster Eprints 
(http://www.wmin.ac.uk/westminsterresearch). 
 
In case of abuse or copyright appearing without permission e-mail wattsn@wmin.ac.uk. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by WestminsterResearch

https://core.ac.uk/display/161118381?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 12, NO. 6, NOVEMBER 2008 707

Artificial Odor Discrimination System Using
Electronic Nose and Neural Networks for the

Identification of Urinary Tract Infection
Vassilis S. Kodogiannis, Member, IEEE, John N. Lygouras, Andrzej Tarczynski, Member, IEEE,

and Hardial S. Chowdrey

Abstract—Current clinical diagnostics are based on biochem-
ical, immunological, or microbiological methods. However, these
methods are operator dependent, time-consuming, expensive, and
require special skills, and are therefore, not suitable for point-of-
care testing. Recent developments in gas-sensing technology and
pattern recognition methods make electronic nose technology an
interesting alternative for medical point-of-care devices. An elec-
tronic nose has been used to detect urinary tract infection from
45 suspected cases that were sent for analysis in a U.K. Public
Health Registry. These samples were analyzed by incubation in a
volatile generation test tube system for 4–5 h. Two issues are being
addressed, including the implementation of an advanced neural
network, based on a modified expectation maximization scheme
that incorporates a dynamic structure methodology and the con-
cept of a fusion of multiple classifiers dedicated to specific feature
parameters. This study has shown the potential for early detection
of microbial contaminants in urine samples using electronic nose
technology.

Index Terms—Electronic nose, microbial analysis, multiple
classifiers, neural networks (NNs).

I. INTRODUCTION

THE INCREASED knowledge in bionics and artificial intel-
ligence has revolutionized many areas of human activity.

The employment of these approaches in medicine will be no ex-
ception. New socioeconomic factors and general globalization
of the world requires the development and application of new in-
telligent diagnostic and therapeutic near-patient or home-based
devices to control disease more effectively [1].

Microbial diseases constitute the major cause of death in
many developing countries. Bacterial detection requires analyt-
ical methods that can satisfy a series of criteria such as short
detection time (t ≤ 3 h), sensitivity (detection of bacterial con-
centrations during infection >105 cells/ml) specificity (species
accurate identification), and low cost.
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Over the past years, there have been an increasing number
of attempts to apply “olfactory” diagnostics based on volatiles
production in clinical practice. Microbial–host interaction of
certain metabolic disorders can cause early liberation of gas
molecules in breath, urine, feces, and sputum or sweat in clin-
ical samples. Even though the introduction of gas chromato-
graphic (GC) techniques and later mass spectrometry (MS) en-
abled the comprehensive study of possible disease markers, it
never evolved to a fully operational and accredited diagnos-
tic tool. Increased capital cost, laborious and time-consuming
methods, the severe complexity of human volatile samples, and
the need for highly skilled personnel are some of the limitations
that emerged through the years [2]. However, the accumulated
knowledge helped understanding of the way the human body
responds to disease and the role of organic volatile compounds
(VOCs) as target markers for future smart diagnostics.

The name “electronic nose” (e-nose) comes from a certain
parallel of the measurement concept of the instrument and that
of the mammalian olfactory system. e-Noses base the analy-
sis on the cross-reactivity of an array of semiselective sensors.
Often the sensitivity of electronic noses is similar to that of hu-
man noses but humans are specially gifted in sensing specific
compounds. The biological sensitivity can go down to ppt lev-
els with a response time in the order of milliseconds whereas
instruments barely go under ppb levels with a response time in
the order of seconds (Table I) [3].

In industry, odor assessment is usually performed by hu-
man sensory analysis or by GC/MS. The latter technique gives
information about volatile organic compounds but the correla-
tion between analytical results and global odor perception is
not direct due to potential interactions between several odor-
ous components. The ideal sensors for integration in an e-nose
should fulfill the following criteria: high sensitivity; they must
respond to different compounds present in the headspace of the
sample; high stability and reproducibility; short recovery time;
easy calibration; they must also be robust and portable [4].

Various sensor technologies are employed in e-noses. The
most popular ones that are now used in commercial instruments
are semiconducting metal oxides and electronically conducting
polymers. All types of sensors share a common basic princi-
ple. The interaction of VOCs with the sensor surface leads to
a change of physical properties (conductivity, resistance, fre-
quency) of the sensor, which is measured.

The analysis of infectious diseases represents by far the
largest clinical research area for e-nose technology attracting
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TABLE I
DETECTION THRESHOLD LEVELS OF HUMAN OLFACTORY SYSTEMS AND

ELECTRONIC NOSES

both academic and commercial interest [5], [6]. However, given
the low repeatability of the data patterns extracted from these
sensors and the fuzzy nature of odor patterns, the use of ad-
vanced soft computing intelligence techniques is considered a
necessity for accurate diagnosis.

The objectives of this study are to: 1) analyze 45 specimens
of human urine in vitro by the application of an intelligent di-
agnostic model based on novel generation, detection, and rapid
recognition of urinary volatile patterns within 5 h of receipt of
specimens in the laboratory; 2) develop an extended normal-
ized radial basis function (ENRBF) classifier trained using the
expectation maximization (EM) algorithm and a novel applica-
tion of the split and merge (SM) technique to neural networks
(NNs) and evaluate its performance; 3) implement a multiple-
classifier scheme, for nonlinear pattern recognition problems
involving large and noisy data and explore the benefits of the
fuzzy integral as a soft fusion method.

II. INSTRUMENT AND EXPERIMENTAL CONDITIONS

A. Urine Samples and Volatile Generating Kits

Approximately 80% of uncomplicated urinary tract infec-
tions (UTIs) are caused by Escherichia coli and 20% by enteric
pathogens such as Enterococci, Klebsiellae, Proteus spp., co-
agulase (–) Staphylococci, and fungal opportunistic pathogens
such as Candida albicans. Enhanced concentrations of fatty
acids (especially acetic acid) and/or ammonia and amines have
also been inspected. Positive to UTI samples (defined as being
>105 cfu.ml−1) ranged from 8 to 500 ppm acetic acid, with
the average value being approximately 100 ppm. Using conven-
tional methods, laboratory examination of urine requires 24 h
incubation in order to obtain an accurate colony count.

TABLE II
MONOMERS AND DOPANTS USED IN THE BLOODHOUND BH114 SYSTEM

An additional 12 ± 24 h is needed for organism identification
and susceptibility testing, which may further delay the admin-
istration of the most appropriate narrow-spectrum antibiotic.
Forty-five 5 ml urine samples (following eukaryotic cell filter-
ing extraction) were collected from randomly selected patients
admitted in Gloucestershire Public Health Leadership Society
(PHLS) and inoculated into specially made centrifuge bottles
(50 ml) each containing 95% brain heart infusion (BHI) broth,
5% serum bovine, 0.70 mg.ml−1 of a series of amino acids,
1 mg.ml−1 urea, 0.75 mg.ml−1 lactose, 0.1 mg.ml−1 casein,
0.3 mg.ml−1 acetylcholine to a final volume of 20 ml per volatile
generating kit (VGK) and incubated aerobically for 5 h at
37 ◦C [7].

B. Gas Sensing System and Flow Injection Analysis (FIA) of
Urinary Volatiles

The e-nose (Bloodhound BH-114) used in this study em-
ployed 14 conducting polymer sensors. Specific selection and
polymer tailoring, doping materials, and precise manufacturing
process can make each of the 14 sensors consistently respon-
sive to a variety of volatile mixtures. Table II illustrates the
monomers and dopants used for BH114 device. The BH114 in-
strument consists of a fully integrated sampling system with the
sensor array and hardware controlled by proprietary Windows-
based software, which also incorporates data collection and pre-
processing software (Fig. 1) [8]. The interaction of the VOCs
and the conducting polymer surface produces a change in re-
sistance, which is measured and subsequently displayed on the
computer screen. After 5 h of incubation to coincide with the
logarithmic phase of growth, 45 VGK were placed in a 37 ◦C
water bath and directly connected to the e-nose by inserting a
needle into the headspace of the sample vials. The actual urine
sampling time and baseline recovery per specimen was 3 min.
The individual samples were analyzed in a random order. A data
capture software analyzed complex volatile patterns liberated
over the headspace of 45 UTI-VGK specimens and extracted
multiple sensor parameters from each patient profile for further
postprocessing analysis.

Authorized licensed use limited to: University of Westminster. Downloaded on June 9, 2009 at 05:26 from IEEE Xplore.  Restrictions apply.



KODOGIANNIS et al.: ARTIFICIAL ODOR DISCRIMINATION SYSTEM USING ELECTRONIC NOSE AND NEURAL NETWORKS 709

Fig. 1. Overview of e-nose configuration.

Fig. 2. Parameters measured for each sensor response.

III. DATA EXPLORATION

From the 45 randomly selected samples, 30 cases of UTI were
identified using standard microscopy and culture. Of these, 13
were infected with E. coli (e), nine with Proteus sp. (p), and
eight with coagulase–Staphylococcus sp. (st). The remaining
ones were clean cases (n). These data were randomly divided
into two groups. The first composed of 31 samples (e: 9, p: 6,
st: 5, n: 11) that were used as a “training” group. The second
set of 14 samples (e: 4, p: 3, st: 3, n: 4) was used as a valida-
tion set. The sensor responses from each of the samples were
analyzed through the extraction of four sensor features that the
sensor–volatile physiochemical interaction and pattern extrac-
tion. These features are: 1) divergence (DIV): maximum step
response; 2) absorption (AB): maximum rate of change of re-
sistance; 3) desorption (DS): maximum negative rate of change
of resistance; 4) area under the curve (AR). Fig. 2 displays a
real-time sensory response curve taken from a microbial volatile
headspace [9]. The 14 conducting polymers and the four sensor
features thus provided a set of 56 sensor parameters extracted
for each sample.

e-Nose raw data might not be the most useful input variables
for statistical analysis due to noise, sensor drift, or inconsistency.
In our case, responses have been normalized according to

x′
ij =

xij√∑m
k=1 x2

ik

(1)

where x′
ij is the normalized sensor response, xij is the raw

sensor response, and xik are the individual sensor responses.

A. Multiple Neural Network Fusion

In this study, four subsystems have been developed, and each
of them was associated with the four parameters extracted from
the sensor response curve. Each feature has been modeled with
a 14-input 4-output subnetwork. This provides a degree of cer-
tainty for each classification based on the features’ own inputs.
The outputs of each of these networks must then be combined to
produce a total output for the system as a whole. The aim in this
study is to incorporate information from each feature space so
that decisions are based on the whole input space. The simplest
method, the average, does not take into account the objective ev-
idence supplied by each of the feature classifiers and confidence
that we have in that classifiers results.

The fuzzy integral is an alternative method that claims to
resolve both of these issues by combining evidence of a classi-
fication with the systems expectation of the importance of that
evidence. By treating the classification results, a series of dis-
jointed subsets of the input space Sugeno defined the gλ-fuzzy
measure [10] as

g (A ∪ B) = g (A) + g (B) + λg (A) g (B) , λ ∈ (−1,∞)
(2)

where the λ measure can be given by solving the following
nonlinear equation:

λ + 1 =
K∏

i=1

(
1 + λgi

)
, λ > −1. (3)

When combining multiple NNs, let gi denote the fuzzy mea-
sure of network i. These measures can be interpreted as quantify-
ing how well a network properly classified the samples/patterns.
They must be known and can be determined in different ways,
i.e., the fuzzy measure of a network could equal the ratio of cor-
rectly classified patterns during supervised training over the total
number of patterns being classified. In this research, each net-
work’s fuzzy measure equaled 1 − Ki , where Ki was network
ith overall testing kappa value [11]. A pattern is being classified
to one of m possible output classes, cj for j = 1, . . . ,m. The
outputs of n different networks are being combined, where NNi

denotes the ith network. First, these networks must be renum-
bered/rearranged such that their a posteriori class probabilities
are in descending order of magnitude for each output class j

y1(cj ) ≥ y2(cj ) ≥ · · · ≥ yn (cj )

where yi(cj ) is the ith network’s a posteriori class j probabil-
ity. Next, each network/set of networks’ gλ-fuzzy measure is
computed for every output class j and is denoted by gj (Ai).
Ai = {NN1 , NN2 , . . . , NNi} is the set of the first i networks or-
dered correspondingly to class j’s associated a posteriori proba-
bilities. These values can then be computed using the following
recursive method.

gj (A1) = gj ({NN1}) = g1

gj (Ai) = gj ({NN1 , . . . , NNi})
= gi + g(Ai−1) + λgig(Ai−1), for 1 < i < n

gj (An ) = gj ({NN1 , . . . , NNn}) = 1.
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Fig. 3. ENRBF concept.

Finally, the fuzzy integral for each class j is defined as [12]
n

max
i=1

[min[yi(cj ), gj (Ai)]]. (4)

The class with the largest fuzzy integral value is then chosen
as the output class to which the pattern is classified.

IV. LEARNING-BASED CLASSIFIERS

Each subsystem in the proposed multiple-classifier concept
was modeled with an appropriate intelligent learning scheme.
Locally active networks are less prone to dimensionality prob-
lems as each single neuron node defines a multidimensional
hypersphere in the input domain. This hypersphere is often de-
fined through the use of a Gaussian activation function placed
on the neuron. Each neuron has a mean parameter and a de-
viation parameter. The mean parameter defines the location of
the neurone in the input domain while the deviation parameter
defines the size and the shape of the neuron. If a single value is
used as the deviation parameter, then the neuron has an equal
size along each axis of the input domain [13]. More frequently, a
diagonal or full variance matrix is instead used. This alternative
way provides differing levels of deviation along each axis of the
input domain. Networks utilizing these types of neurones are
often called normalized radial basis function (NRBF) networks.
These are computationally similar to Gaussian mixture models
(GMMs) and methods for fixing the parameters of one can often
be applied to the other.

The proposed modified extended NRBF (ENRBF) extends
the NRBF network by incorporating a linear sum associated
with each neuron [14]. In this study, we consider the neurons
of the ENRBF as a GMM so as to be able to readily apply the
EM algorithm. The proposed scheme is illustrated in Fig. 3.
For a system with N sets of C inputs contained in a matrix X,
L outputs, and M partitions/neurones, we can define the output
y1 , . . . , L for an input vector x as

ŷl (xi) =
M∑

j=1

Φj (xi) Al
j (xi). (5)

For each output l = 1, . . . , L, l = 1, . . . , N ,

Φj (xi) =
Ψj (xi)∑M

j=1 Ψj (xi)
(6)

Ψj (xi) = αj
1

(2π)M/2 |Σj |1/2 exp

(
−1

2
(xi − µj )T (xi − µj )

Σj

)

(7)

where Θj = (αj , θj ), θj = (Σj , µj ) are parameters of the net-
work, and

Al
j (xi) = alT

j xi (8)

where al and xi,0 = 1. There are two sets of parameters to
be modified through learning, i.e., Θ parameters that govern
the position and size of the neuron. Using the aforementioned
notation, α is a scaling factor or prior probability in a GMM, µ
is the center or mean value, and Σ is the diagonal or complete
covariance matrix representing the deviation along each axis of
the input domain. The parameters a in (8) are the coefficients of
the linear model.

A. EM Algorithm for GMM and Linear Models

The EM algorithm is an iterative approach that aims to com-
pute a new parameter set Θ based on the maximization of a like-
lihood function describing Θ with respect to a data set X. The
purpose of applying an unsupervised clustering process such as
the EM algorithm to GMM is to determine the mean, deviation,
and prior probability of the GMM that represents the locally
active neurons of the ENRBF. The distribution of the neurons
can be represented by the following probabilistic model:

p(x|Θ) =
M∑
i=1

Ψi(x) =
M∑
i=1

αipi(x|θi). (9)

The equations for updating the parameters at each step are
calculated as [15]

α
(t)
i =

1
N

N∑
n=1

Φi(xn ) (10)

µ
(t)
i =

∑N
n−1 xnΦi(xn )∑N

n−1 Φi(xn )
(11)

Σ(t)
i =

∑N
n=1 Φi(xn )(xn − µ

(t)
i )(xn − µ

(t)
i )T∑N

n=1 Φi(xn )
. (12)

Starting from an initial set of values, these equations
are guaranteed to converge to a local maximum value
for the Q(Θ(t) |Θ(t−1)) =

∑N
n=1

∑M
n=1{log αipi(xn |θi)} ×

P (i|xn ,Θ(t−1)) function [12]. The GMM provides a means
to define local areas within the input space. Each density in the
mixture represents a neuron in the ENRBF structure, the nor-
malized probability of a given x belonging to given i, a specific
density is the neuron activation level Φi for i ∈ {1, . . . , M}.
The linear coefficients of the local models can be identified by
adopting the assumption that the parameters of the neurons are
fixed. This is carried out by explicitly declaring a variable repre-
senting the expectation of the complete data as a function of the
incomplete data X. Following the two-step algorithm, the ex-
pectation step provides a desired output from each neuron–local
model pair. The maximization step then optimizes the linear
coefficients of A(·) so as to fit each of the linear models to the
members of X covered by each neuron. The parameters for the
next iteration are then calculated by

a
l(t)
i = (XT Φ iX)−1(XT Φ iu

l
i) (13)
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for i ∈ {1, . . . , M} and l = 1, . . . , L, where

ul
i = [ul

i,1 · · · ul
i,N ]T

Φi = diag (Φi(xi,1), . . . ,Φi(xi,N )).

The weighting factor Φi , i ∈ {1, . . . , M}, used in order to
insure that local models are weighted toward those input patterns
that are within the neurons’ activation area [16].

B. Split and Merge EM (SMEM) Algorithm

The EM algorithm is guaranteed to train the parameters to a
local optimum. However, the EM process for the identification
of the parameters for the Gaussian activation functions is very
dependant on the choice of initial values. Without very careful
selection of initial values, it is highly likely that, after training,
there will be some areas of the input domain that are overly pop-
ulated with activation neurons and some areas not sufficiently
represented. A set of criteria has been proposed that can be used
to identify neurons in overpopulated domains to be merged, and
neurons that do not adequately describe the area of the input do-
main they cover to be split [17]. Standard EM is performed until
convergence is satisfied. Two neurons are selected for merging
using the following matching criteria:

Jmerge(i, j|Θ(t)) = ΦT
i Φj (14)

where

Φi = �Φi(xi,1), . . . ,Φi(xi,N )	 ,

i ∈ {1, . . . , M}, i ∈ {1, . . . , M}, i 
= j.

Two components with a high value can be considered as good
candidates for merging. The split criteria are performed through
the use of the local Kullback divergence that gives a measure a
degree of entropy between two distributions. A measure is taken
between the local divergence around a specific neuron gk (·) and
the empirical distribution across the whole data space hk (·):

Jsplit(k|Θ(t)) =
N∑

n=1

gk (xn |Θ(t)) ln

[
gk

(
xn |Θ(t)

)
hk

(
xn |Θ(t)

)
]

gk (x|Θ(t)) =
∑N

n=1 δ (x − xn ) Φk (xn )∑N
n=1 Φk (xn )

hk (x|Θ(t)) =
1
N

δ (x − xn ) (15)

for k ∈ {1, . . . ,M} and where δ (·) is the Kronecker delta func-
tion. The k with the largest value is a candidate for splitting. To
perform merging operations, the selected neurons i and j are
combined by the following process:

α
(t+1)
i = αi + αj (16)

θ
(t+1)
i =

θ
(t)
i

∑N
n=1 Φi(xn ) + θ

(t)
j

∑N
n=1 Φj (xn )∑N

n=1 Φi(xn ) +
∑N

n=1 Φj (xn )
. (17)

This leaves the neuron previously indexed by j free to be used
for one half of the split neuron. As a result, the number of neu-
rons in the system remains constant. The “split” operation in

this study is performed by splitting the neuron along its largest
axis using the eigenvalues of the kth mixture [18]. By putting
together the SMEM method for GMM and the EM-based tech-
nique for linear parameter estimation, the following algorithm
has been implemented. The goal of this is to establish both the
locations and deviations of the Gaussian components and the
linear models [18].
Step 1: Initialize parameters for network.
Step 2: Perform standard GMM EM operations until conver-

gence using (10)–(12). Identify parameters for local
models using (13).

Step 3: Calculate merge candidates using (14).
Step 4: Select best candidates for merge setting the value in

Jmerge to 0.
Step 5: Calculate split candidates using (15).
Step 6: Select best candidate for split setting the value in Jsplit

to 0.
Step 7: Perform SM, then the partial EM steps. Then select

parameters for the linear models using (13), and call
this parameter set Θ∗.

Step 8: If results of Θ(t) are better than results of Θ∗, then
Θ(t) = Θ∗, and go back to step 2). Else if results of
Θ(t) are worse or the same as results of Θ∗ and there
are further values of Jsplit , go back to step 6). Else
if results of Θ(t) are worse or the same as results of
Θ∗ and there are further values of Jmerge , go back to
step 4).

Step 9: Finish with the best parameter set Θ(t) .

V. DISCUSSION OF RESULTS

The adopted architecture reduced the dimensionality of the
network search space from 56 to 14 because the input space of
each module is divided over the four nets (4 ×14 = 56). Reduc-
ing the search space in this way increases both computational
efficiency and the probability that optimal network parameters
will be found within the search space. The accuracy of a high-
dimensional network is also directly related to an increased
number of training samples. For the case of complex clinical
patterns, it is inevitable to apply NNs due to the high variability
between the individual samples [19]. Each class must be com-
posed of representative and reproducible samples. In the case of
clinical cases, it is usually difficult to obtain a massive number
of samples from the National Health Service (NHS) laborato-
ries, and emphasis is given to the quality of data rather than the
quantity [5], [8]. Each of the ENRBF subnetworks consisted of
four outputs corresponding to each of the classes and 14 inputs,
while six local neurons have been used with the corresponding
linear models. The parameters for the activation functions were
initialized by selecting random values in the range of the entire
distribution. The parameters for the linear models were initial-
ized with random values between 0 and 1. Each network was
trained in their respective feature space. Although the decision
boundary for a two-class problem is where the posterior proba-
bilities of these two classes equal 0.5, in the case of multiclass
problems, there is an increase in uncertain areas, as these bound-
aries can be in regions with posterior probabilities between 1/C
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TABLE III
FEATURES ACCURACY FROM INDIVIDUAL SUBNETWORKS

Fig. 4. Performance using average as a fusion method.

and 0.5, where C is the number of classes. This also increases
the chance that the classification will change when a fusion
combination rule will be used. It is also important that all class
probabilities should be calculated for specific data [20]. When a
higher confidence is required for classification tasks, especially
in clinical cases, an acceptance threshold on the class probabil-
ity can be introduced. Then probabilities around the decision
boundary are excluded from classification. In that case, the de-
cision obtained by the multiple-classifier scheme is judged by
the medical consultant who will take the final decision.

Divergence achieved correct classification in 13 of the 14
“testing” patterns incorrectly classifying one of E. coli infected
samples as normal. The minimum decision boundary was 0.53
showing that the quality of the classification was high. The sub-
network trained to classify the absorption data correctly classi-
fied 9 out of 14. The minimum boundary was however 0.349.
This is clearly above the 0.25 threshold defined for a four-class
problem. The network trained on Desorption data incorrectly
classified two E. coli samples as normal. However, the mini-
mum decision boundary was 0.54 that shows that those classi-
fied were done confidently. The network trained to classify the
area readings classified 10 out of the 14 “testing” examples cor-
rectly. It misclassified two Staphylococcus as normal and two
normal cases as being infected with E. coli. The related decision
level for the correctly classified cases was 0.4277. These results
are shown in Table III.

These results were fused using the two fusion methods de-
scribed in the previous section. By averaging the outputs from
each of the four feature-based networks, an overall accuracy of
100% was achieved. As can be seen in Fig. 4, decision levels of
the diagnosis drop as low as 0.3776 for the case of one normal
sample. The decision for E. coli for this specific sample was
0.24. This is clearly the case where medical support is needed
for the final decision.

These results are also verified through the calculation of the
parameters normally used in medical diagnostics tests [21]: sen-
sitivity, 88%; specificity, 60%; and predictability, 80%. How-

Fig. 5. Performance using fuzzy integral as a fusion method.

ever, by applying the fuzzy integral methodology as a fusion
scheme, as can be seen in Fig. 5, the accuracy for the system as
a whole is still 100%, but now all of the decision levels for the
diagnosis are over 0.5. These results are also verified through
the calculation of the remaining parameters: sensitivity, 100%;
specificity, 100%; and predictability, 100%.

RBF networks have a clear advantage over multilayer percep-
trons, in terms of accuracy and faster training times. However,
the problem of determining RBF’s structure in an optimal way
still exists. The ENRBF can be considered as an extension of
the classic RBF simple architecture. The approach taken here
attempts to address some of the established problems with EM
training of Gaussian systems. The SMEM algorithm has been
incorporated into the ENRBF network. The inclusion of the SM
concept attempts to tackle the problem of identification of lo-
cal maxima when calculating the parameters of the Gaussian
functions. The novel application of the SMEM approach has
shown to provide an effective means of overcoming the prob-
lem of local optimum within EM training for the selection of
neurons parameters. The use of eigenvalues and eigenvectors to
calculate the axis of a neuron split operation instead of random
values has been adopted. The ENRBF model has been extended
with the least squares EM algorithm for fixing the parameters
of the linear models. We have also made the use of the informa-
tion contained in the covariance matrix when carrying out the
split operations. This is to improve the stability of the EM algo-
rithm and to also mean that the experiments are repeatable. The
application demonstrates that the technique, which is character-
ized by its speed in training processing, is capable of modeling
complex high-dimension data.

VI. CONCLUSION

There is an urgent need for new point-of-care devices that
are not only cheap and robust but also simple to operate. In
this study, an alternative approach based on gas-sensing tech-
nology was taken to investigate the suitability of such a system
as a point-of-care device. It should be emphasized here that this
system is not being proposed as a replacement for a clinician’s
diagnosis but rather to supplement other diagnostic methods.
It also helps the clinician deliver better service as the e-nose
system has the potential advantage of making decisions 24 h per
day, seven days per week. This study suggests that the e-nose
combined with advanced learning-based processing tools is able
to identify specific bacterial pathogens with accuracy and speed,
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even with a small sample quantity, at the point-of-care. Chronic
renal failure and tuberculosis are also two diseases where peo-
ple could benefit from new point-of-care devices based on gas
sensors.
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