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Abstract

Olfaction is a valuable source of information about the environment that has not been sufficiently exploited in mobile robotics
yet. Certainly, odor information can contribute to other sensing modalities, e.g. vision, to successfully accomplish high-level robot
activities, such as task planning or execution in human environments. This paper describes the developments carried out in the scope
of the IRO project, which aims at making progress in this direction by investigating mechanisms that exploit odor information (usually
coming in the form of the type of volatile and its concentration) in problems like object recognition and scene-activity understanding.
A distinctive aspect of this research is the special attention paid to the role of semantics within the robot perception and decision-
making processes. The results of the IRO project have improved the robot capabilities in terms of efficiency, autonomy and usefulness.
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1. Introduction

The sense of smell is not the most vital one for humans, but
we certainly use it every day. When we face a cup with a dark
colored liquid we can assure that it is a cup of coffee not only for
what we observe, but also for what we smell. When we detect
an alarming odor that might be associated to gas/butane we do
not look for the possible escape in the living room but we firstly
go to the kitchen, where we do not inspect randomly, but we turn
our attention to those devices that use gas (e.g. hob, oven, etc.).
As in the last example, the smell sense usually triggers alerts:
a possible fire, a gas leak, food in poor condition, etc., but also
is associated to emotionally rooted processes (Shepherd, 2004):
memories, attraction or repulsion, etc. Both facets are inter-
esting in robotics, although the latter, especially relevant in the
long term for the so-called ”social robots” (Leite et al., 2013;

∗Corresponding author.
Emails: jgmonroy@uma.es (Javier Monroy), jotaraul@uma.es

(Jose-Raul Ruiz-Sarmiento), famoreno@uma.es (Francisco-Angel
Moreno), cgalindo@uma.es (Cipriano Galindo),
javiergonzalez@uma.es (Javier Gonzalez-Jimenez)

URL: mapir.uma.es/jgmonroy (Javier Monroy),
mapir.uma.es/jotaraul (Jose-Raul Ruiz-Sarmiento)

Truong y Ngo, 2018), is beyond our current interest and expec-
tations. The IRO project focuses on the usefulness of a mobile
robot able to detect and measure gases in the environment in
order to identify the activities carried out in its surroundings,
e.g. smoking, cooking, mopping the floor, etc. Having identi-
fied the situation, the robot should be able to act consistently,
for example, locating and scolding the smoker, avoiding to pass
by freshly mopped areas or, perhaps, interacting in a ”social”
way to help the person who is cooking.

In order to achieve these robot skills, the IRO project relied
on ”electronic noses” (e-noses) (Röck et al., 2008). E-noses are
electronic devices composed by a set of gas sensors and differ-
ent software components that provide a measure of the type and
concentration level of the detected volatile substances. Despite
the important advances in recent years in the development of
this technology, the performance of gas sensors and algorithms
for the classification of gases is still far from the olfactory ca-
pacity of humans, not to mention some other animals with much
more developed olfactory capabilities.

In consequence, in spite of the limited performance of
the current e-noses, the olfactory information interestingly in-
creases the robot abilities when combined with other sensors
like vision, and knowledge sources like semantics. For exam-
ple, if the robot detects smoke, the utilization of vision would
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be crucial for identifying an oven and inspecting it as the pos-
sible object releasing the alarming gas. Additionally, semantic
information regarding the usual location of ovens, i.e. kitchens,
can improve the robot actuation.

The final aim of the IRO project has been to enable a mobile
robot to (i) combine olfaction and vision information and (ii) ex-
ploit semantic knowledge to smartly operate within human en-
vironments. Results of the project have been published in Mon-
roy et al. (2016); Gongora et al. (2018); Sanchez-Garrido et al.
(2014); Monroy y Gonzalez-Jimenez (2018); Ruiz-Sarmiento
et al. (2016). In this paper we provide an overall and compre-
hensive view of the findings and results of the IRO project.

2. Project Overview

The general objective of the IRO project is to investigate
mechanisms for integrating olfactory data into the robot sensing
system, as well as the development of algorithms for decision
making and task generation that exploit the combination of the
different sensor modalities. The key idea behind the project is
that the perception of gases, including both their classification
and the measurement of their intensity or concentration, can im-
prove the intelligent behavior of the mobile robot, upgrading its
performance in terms of efficiency, autonomy and usefulness.
Within this global target we can distinguish three partial objec-
tives:

• Design and fabrication of an artificial nose (e-nose)
adapted to the requirements of a mobile robot. Most of
the e-noses used in mobile robotics are designed for mea-
suring only the chemical concentration, aiming at tasks
like the creation of concentration maps and/or the search of
the emission sources. In the context of the present project,
it is necessary that the electronic nose is designed to also
provide information on the type of gas, that is, be as effec-
tive as possible in the classification of the detected chem-
ical volatile. The objective is, therefore, to combine both
facets which requires integrating different sensor technolo-
gies into a single device.

• Gas classification and object recognition for robotics
applications. The robot, equipped with a vision system
(e.g. one or multiple RGB or RGB-D cameras) and an elec-
tronic nose, could successfully improve the vision-based
recognition of simple objects, exploiting the odor informa-
tion gathered in the surroundings, as well as enhancing the
gases classification when considering the semantic infor-
mation and the probabilistic categorization of the detected
object.

• Exploiting high-level olfactory and visual semantic in-
formation in the planning and execution of tasks. Se-
mantics provide additional human-like information to the
perceived elements. For example, a high concentration of
gases related to rotten food suggest that somebody forgot
about it. Semantic information can be exploited to au-
tomatically infer new robot tasks in order to maintain a
set of pre-stablished human-like norms, in this case, rotten
food should be taken out of the house, Galindo y Saffiotti
(2013). Among the multiple tasks that can benefit from
such inference process, we focus on the challenging task

Figure 1: Picture of the e-nose prototype built for the IRO project. Its mod-
ular and compact design allows it to be easily mounted on a mobile robot
and adapted to the application requirements.

of source localization with a mobile robot in indoor en-
vironments, aiming at minimizing the necessary time to
locate the object emanating the gases in the environment.

Next sections describe with more detail the work done to
reach these partial objectives (see Sections 3, 4 and 6).

3. Design and Fabrication of an Artificial Nose Adapted
to the Requirements of a Mobile Robot

The first step to attain the objectives identified in this project
is the design and fabrication of an e-nose prototype for gas clas-
sification and concentration estimation and its integrationg into
a mobile robot. Typically, e-noses detect volatile chemical sub-
stances by means of an array of non-selective gas sensors, that
is, with sensors that react to a wide range of different gases,
but provide no specific information about the chemical iden-
tity. Therefore, the output of the sensor array is usually fur-
ther processed by some sort of machine learning algorithm to
classify (Monroy y Gonzalez-Jimenez, 2018; Gutierrez-Osuna
y Nagle, 1999) or quantify (Gunter et al., 2016; Monroy et al.,
2013) the samples. E-noses offer, as a result, a relatively cheap
and fast tool to assess the presence of gases, but with a substan-
tially greater error and uncertainty margin than precise analytic
methods, like gas-chromatography or mass-spectrometry (Cui
et al., 2015).

Common gas sensor technologies employed to build e-
noses include metal oxide (MOX), amperometric electrochem-
ical (AEC), quartz crystal microbalance (QCM), conducting
polymers (CP), and surface acoustic wave (SAW). Each of these
exhibit advantages and disadvantages in terms of selectivity,
sensitivity, response speed, influence by environmental condi-
tions and drift over time, among others (Röck et al., 2008; Mon-
roy et al., 2012). However, no single technology excels in all
categories. Thus, limiting the design of an e-nose to a single
sensor technology will restrict its performance and, quite often,
prevent it from reaching the demanded specifications (Sanchez-
Garrido et al., 2014). This motivates the combination of differ-
ent gas sensor technologies into a single e-nose, which would
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result in a sensor array with better dynamic capabilities and
a more informative output than any single sensor technology.
Since it is unfeasible to install all possible gas sensors and tech-
nologies simultaneously on a single device, it also becomes ap-
pealing to design an e-nose in such a way that its sensor array
can be reconfigured depending on the applications, keeping it
cost-efficient and compact.

To this end, exploiting our previous experience in the de-
sign of e-noses (Gonzalez-Jimenez et al., 2011), the IRO project
envisaged a novel e-nose architecture (Gongora et al., 2018)
that combines self-contained and intelligent sensor boards (i.e. ,
modules) with a decentralized design offering a viable solu-
tion to the problem of integrating heterogeneous gas sensors
in a modular fashion. This allows us to create different and
specific gas-sensing devices from inter-connectable building
blocks, which not only brings versatility and reusability to the
design of e-noses but also reduces development costs and en-
sures long-term serviceability, as new sensors can be added as
needed. Fig. 1 shows a picture of the prototype built along the
course of this project.

Moreover, the proposed e-nose architecture also enables the
integration of other electronic components like GPS for geo-
referenced measurements, or wireless communications for re-
mote readings, a feature which, despite not being a technologi-
cal contribution, provides an improvement over most commer-
cial e-noses and facilitates applications of mobile robot olfac-
tion.

4. Gas Recognition and Classification for Robotic Appli-
cations

The task of odor recognition deals with the problem of
identifying a volatile sample among a set of possible cate-
gories (Trincavelli et al., 2009). This process plays an important
role in the development of many applications, such as city odor
mapping (Onkal-Engin et al., 2005; Monroy et al., 2014), pol-
lution monitoring (Hasenfratz et al., 2015), breath analysis in
clinical environments (Guo et al., 2010), or the nowadays com-
mon estimation of blood alcohol content for drivers (Gibb et al.,
1984; Hlastala, 1998). Among them, there are some applica-
tions like pollution monitoring or leak detection that require to
measure the environment continuously and/or at different loca-
tions. For such scenarios, the use of a mobile robot with the ca-
pability of identifying and measuring the volatiles concentration
is of great help, as already reported in Marques et al. (2002).

4.1. Gas Classification
The classification of volatile substances is, possibly, the most

studied application of e-noses. Traditionally, this has been per-
formed by analyzing the response of an array of gas sensors
when exposed to pulse-like gas excitation under well-controlled
measurement conditions (i.e. temperature, humidity, exposure
time, etc.). Unsurprisingly, dozens of works report less than
10% classification error rate under these specific circumstances.
However, when the classification is to be performed on a real,
uncontrolled scenario, and particularly for the case where the
e-nose is collecting samples onboard a moving platform, as-
sumptions such as a perfect alignment or equally length of pat-
terns do not hold (Vergara et al., 2013). This, which is due
to the dynamic and chaotic nature of gas dispersal, together

with the strong dynamics shown by most gas sensor technolo-
gies, notably increases the complexity of the classification prob-
lem (Monroy et al., 2016).

4.2. Continuous Chemical Classification
The discrimination of gases performed with a robot equipped

with an array of gas sensors presents a number of additional
challenges when compared to standard identification applica-
tions. While standard classification tasks usually host gas sen-
sors inside a chamber with controlled humidity, temperature and
airflow conditions, in robotics olfaction there is no control over
the sensing conditions. This entails that the sensor signals to be
processed are noisy and dominated by the signal transient be-
havior (Trincavelli, 2011). Under these challenging conditions,
chemical recognition can be seen as a particular case of time se-
ries classification, characterized by working on sub-sequences
of the main data stream (see Fu (2011) for a complete review).
Nevertheless, most of these approaches are proposed for uni-
variate time series, while e-nose data is fundamentally multi-
variate (i.e based on an array of gas sensors with different dy-
namic responses). This, together with the aforementioned chal-
lenges of real data, make most segmentation approaches diffi-
cult to apply to e-nose data, which, in turn, affect negatively to
the classification rate.

A novel approach was published in Schleif et al. (2016) as a
partial result of the IRO project to address the aforementioned
issues. This approach is based on generative topographic map-
ping through time (GTM-TT) and integrates supervised clas-
sification and relevance learning (SGTM-TT) to the problem
of volatile identification in mobile robotics. By exploiting the
strong temporal correlation of the e-nose data, the method is
capable to classify gases with high accuracy employing short
data sequences (1s, 10s and 20s). Given the ephemeral nature
of gas dispersion, it is also analyzed the impact of the data se-
quence length on the classification performance, trying to push
the limits towards a fast-response chemical recognition system.
Furthermore, another remarkable advantage for robotics appli-
cations is the introduction of a relevance value, by studying the
relevance of the different sensors composing the e-nose, and the
time points in the data sequence, for predicting the class label
(see Fig. 2).

Later, in Monroy et al. (2016) we advocated the use of the
well known sliding window approach to avoid feature based
segmentation and to study up to which extent considering de-
layed samples contributes to exploit the temporal correlation of
e-noses data. This technique is attractive because it is simple,
intuitive, and, moreover, because it is amenable to online ap-
plications, which is a primary focus of the IRO project. We
analyzed the impact of the window length on the classification
accuracy (see Fig. 3) for three state of the art classifiers, a va-
riety of experimental scenarios, e-nose configurations and gas
classes (employing three different olfaction datasets). The main
conclusion of such work is that, for online chemical classifica-
tion in uncontrolled environments, feeding the classifiers with
additional delayed samples leads to a small, yet important, im-
provement (up to 6% units) on the classification accuracy.

4.3. Gas Classification in Motion
Having demonstrated that online chemical classification is

feasible with a mobile robot, IRO also investigated the impact
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Figure 2: Illustration of the sensor relevance (upper row) estimated for four gas classes and time points relevance profile (bottom row) averaged over all classes
(left) and mean prediction accuracy over time for window length’s of ≈ 1, 10, 20sec (right). These results corresponds to an e-nose dataset collected under
semi-controlled measurement conditions.
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Figure 3: Average classification accuracy of a naive Bayes classifier for
different lengths and positions of the sliding window within the time-series
e-nose data.

of carrying such task while the robot is navigating. We ana-
lyzed the induced changes in the gas sensors response and deter-
mined that the movement of the robot has an important impact
on the classification accuracy if not properly considered, result-
ing in a decrease of up to 30% in some configurations (Mon-
roy y Gonzalez-Jimenez, 2017). We supported our conclusions
with an extensive experimental evaluation consisting of a mo-
bile robot inspecting a long indoor corridor with two chemical
volatile sources (ethanol and acetone) more than 240 times, at
four different motion speeds.

To analyze to which extent the motion of the gas sensing de-
vice may affect the classification accuracy, we trained multiple
classifiers with samples of each chemical volatile collected in a
traditional static setup (i.e both robot and gas source standing

still), and then, analyzed the classification performance for a set
of increasing motion velocities. Fig. 4 shows the results of the
experiments from which a noticeable reduction in the classifi-
cation accuracy is observed when increasing the motion speed.
This confirms our suspicions about the negative impact that the
motion speed of the robot has over classification rate.

To overcome, to a certain degree, the aforementioned effect,
we also analyzed the classification accuracy when the classifier
is also trained with in-motion data samples, proposing different
training schemes. We showed that training a classifier with data
collected in motion yields, on average, more accurate outcomes
(see Fig. 4 (right)) than using a static setup (Fig. 4 (left)). More-
over, we found that it is not necessary to train the classifiers with
data gathered at the same speed than the testing data to remove
this negative correlation, but it suffices to capture the underlying
dynamics. As a general conclusion, the absolute speed is not a
determinant parameter, but the gap between the speeds used to
collect the training and testing datasets is an aspect to be taken
into consideration when deploying real olfaction applications
with a mobile robot.

5. Object recognition and Semantic Knowledge for
Robotic Applications

From the object recognition side, the peculiarities of the ac-
quisition process of visual data by a mobile robot permits the
inspection of larger portions of the robot workspace, gathering
rich semantic information. In this case, semantic information
comes in the form of contextual relations, i.e. objects that are
found according to certain configurations: keyboards are usu-
ally in front of computer screens, microwaves are in the same
room as refrigerators, tables are typically surrounded by chairs,
etc (Galleguillos y Belongie, 2010). Thereby, during the ob-
ject recognition process, the presence of a refrigerator in a room
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Figure 4: Average classification accuracy for different motion speeds when: (left) the classifiers have been trained with static data samples, and (right) the
classifiers have been trained with data collected in motion.

helps to disambiguate the classification of a white, box-shaped
object as a microwave and not as a night stand (Ruiz-Sarmiento
et al., 2016; Oliva y Torralba, 2007).

To exploit these contextual relations in the IRO project we
make use of Conditional Random Fields (CRFs), a model from
the Probabilistic Graphical Models (PGMs) family (Koller y
Friedman, 2009), and combine them with Ontologies (Uschold
y Gruninger, 1996) to achieve a more robust performance.
CRFs represent the objects in the environment as nodes in a
graph, where edges are used to link contextually related objects
(see Fig. 5). In (Ruiz-Sarmiento et al., 2017c) a survey on dif-
ferent learning approaches for these models is presented, per-
forming a comparative analysis focusing on the time needed for
training and the achieved recognition accuracy. This analysis
is especially targeted at finding the most suitable one for scene
object recognition, providing Loopy Belief Propagation (LBP)
the best results (Murphy et al., 1999). These comparisons were
done with two state-of-the-art datasets, including a particular
one, called Robot@Home one (Ruiz-Sarmiento et al., 2017b),
especifically conceived to serve as a testbed for the evaluation
of semantic mapping algorithms, mainly those exploiting con-
textual information.

In order to combine different sources of contextual infor-
mation, novel environment representations can be used such as
the so-called Multiversal Semantic Map (Ruiz-Sarmiento et al.,

2017a). This map is an extension of traditional semantic maps
for robotics (Galindo et al., 2005), with the ability to coherently
manage uncertain information coming from, for example, object
recognition or gas classification processes, and reference them
to the location where they were acquired into a metric map. Ad-
ditionally, it also comprises semantic information codified by
means of an Ontology, enabling the execution of high-level rea-
soning tasks (Kostavelis y Gasteratos, 2015), which are of spe-
cial interest in this project.

6. Exploiting High-level Olfactory and Visual Semantic
Information in the Planning and Execution of Tasks

Mobile robots operating in human environments like of-
fices, hospitals, or factories benefit from the fusion of differ-
ent sensing modalities to efficiently accomplish tasks that are
hard or even unfeasible to address if only one sensor is em-
ployed (Kam et al., 1997). As mentioned, the IRO project we
focus on two of these modalities, namely vision and artificial
olfaction, and study their application to a challenging problem:
the localization of gas emission sources within real-world in-
door environments, commonly referred as gas source localiza-
tion (GSL) (Kowadlo y Russell, 2008). For that, the robot would
need not only to detect the volatile chemical substance that is be-
ing release, but also pinpoint the location of its release source.
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Figure 6: Examples of information from the Robot@Home dataset. First column, reconstructed scenes from the sequences within the dataset. Second column,
labeled reconstructed scenes. Third-fifth columns, examples of individual point clouds from RGB-D observations labeled by the propagation of the annotations
within the reconstructed scenes.

Figure 7: Diagram of a traditional teleoperation system (in black) and ex-
tended olfactory telerobotics (in blue). The latter requires equipping the
mobile robot with additional sensors (e.g. an e-nose or an anemometer), and
enhance the teleoperation user-interface to display this new sensory data.

As stated, enriching the search process with visual sensory in-
formation and considering semantic relationships through an in-
ference process will enhance the current state of art of GSL al-
gorithms.

To demonstrate this claim two parallel approaches were con-
sidered: on the one hand, we relied on human intervention by
means of a teleoperated mobile platform (Monroy et al., 2017b),
delegating the inference of the most likely source location to
the human tele-operator, and, on the other hand, we developed
a fully autonomous system able to infer the most likely source
location based on the sensory data available on the robot and
high-level semantic reasoning Monroy et al. (2018a). Both ap-
proaches are detailed in the following sections.

6.1. Olfactory telerobotics

Since inferring the type of object (and the location in the
environment) of the gas source which is releasing the gases
that have been detected by the robot is not straightforward, we
simplified the problem by introducing the human factor and its
powerful reasoning capabilities to solve this challenging prob-
lem (Gongora et al., 2017). In this context, olfactory teler-
obotics can be seen as the augmentation of the sensing capabili-
ties of a conventional teleoperated mobile robot to acquire infor-
mation about the surrounding air (i.e. gases, wind-speed, etc.) in
addition to the usual audio and video streams (see Fig. 7).

To evaluate whether the human reasoning can be exploited
through a teleoperated robot to efficiently locate the gas source,
we collected a dataset comprised of 60 GSL experiments with

a teleoperated mobile robot (Gongora y Gonzalez-Jimenez,
2019). The goal of the human operators was to identify and lo-
cate the gas source among several visually-identical candidate
objects (see Fig. 8). Results demonstrate that humans had over
75% success rate for search times between three to four min-
utes, supporting our hypothesis that semantic reasoning is in-
deed used by humans when locating the gas source with this
configuration.

6.2. Semantic-based Autonomous Gas Source Localization

The use of visual information when locating a gas source is
not a novel approach, yet, it has been only superficially explored
in the literature with very simple problem domains where the
robot exploited prior knowledge about the source physical char-
acteristics to reduce the locations to search (Ishida et al., 2006).
Moreover, a formal way to define and exploit the relationships
among gases and objects (i.e. , their semantics) it is still miss-
ing, aspect which could assist the GSL process in a more flexible
way. In Monroy et al. (2018b), as a partial result of the prject,
presented a novel GSL system that pursues both efficiency by
exploiting the semantics between the detected gases and the ob-
jects in the environment, and coherence through the considera-
tion of the uncertainty in the identification of gases and objects.
To encode these semantic relationships (e.g. that heaters can re-
lease smoke), we rely on an ontology (Uschold y Gruninger,
1996). These factors makes this approach particularly suitable
for structured-indoor environments containing multiple objects
likely to release gases where semantic relationships can be ex-
ploited.

Fusing the classification results (from both the detected gases
and the recognized objects in the environment) together with
the semantic information, a probabilistic Bayesian framework
is proposed to assign to each detected object a probability of
being the gas source. Finally, a path planning algorithm based
on Markov Decision Processes (MDP) merges these probabili-
ties with the navigation distances from the current robot location
to the different objects (i.e. a cost value related to the time the
robot would spend to reach the candidate object), to produce
a plan that minimizes the search time. Both simulated (using
computational fluid dynamic tools and GADEN gas dispersion
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Figure 8: (left) Ultrasonic scent-diffuser and one of the gas source can-
didates. (middle) User interface for teleoperating the robot running on a
laptop. (right) Giraff telepresence-robot equipped with an e-nose and an
anemometer for remote sensing, and a LIDAR for self-localization.

simulator, Monroy et al. (2017a)) and real experiments demon-
strate the feasibility of this novel approach by considerably re-
ducing the search times and producing more coherent gas source
searches.

7. Conclusions

In this paper we have described and reviewed the goal and
main contributions of the IRO project, focused on the improve-
ment of the sensory and autonomous capability of mobile robots
through olfaction.

We have first reviewed the concept of electronic nose, ris-
ing some specific issues when used on-board a mobile robot,
and described a design of a modular e-nose suited for mobile
robotics applications. Then, having in mind the final goal of
fusing different sensing modalities, we have focused on the in-
termediate tasks of visual object recognition and gas classifi-
cation. Here, the project contribution consists of different al-
gorithms and experimental evaluations towards improving the
recognition rates when these tasks are carried out with a mobile
robot while navigating.

Finally, we have introduced semantic reasoning to success-
fully fuse multiple sensing modalities when solving the chal-
lenging problem of gas source localization with a mobile robot.
In this point, the project contributes with a novel architecture
able to exploit the information provided by the vision and olfac-
tion sensory sub-systems, as well as handling their respective
uncertainties. For each detected object in the environment, a
probability of being the gas source is estimated and afterward
fed to a probabilistic framework that outputs the optimal path
the robot should follow when inspecting the different objects in
the environment, minimizing the search time.
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