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Abstract

Rationale: Alcohol-associated stimuli capture attention, yet drinkers differ in the precise stimuli 

that become paired with intoxication.

Objectives: Extending our prior work to examine the influence of alcoholism risk factors, we 

paired abstract visual stimuli with intravenous alcohol delivered covertly and examined brain 

responses to these Pavlovian conditioned stimuli in fMRI when subjects were not intoxicated.

Methods: Sixty healthy drinkers performed task-irrelevant alcohol conditioning that presented 

geometric shapes as conditioned stimuli. Shapes were paired with a rapidly rising alcohol limb 

(CS+) using intravenous alcohol infusion targeting a final peak breath alcohol concentration of 

0.045 g/dL or saline (CS−) infusion at matched rates. On day two, subjects performed monetary 

delay discounting outside the scanner to assess delay tolerance and then underwent event-related 

fMRI while performing the same task with CS+, CS−, and an irrelevant symbol.

Results: CS+ elicited stronger activation than CS− in frontoparietal executive/attention and 

orbitofrontal reward-associated networks. Risk factors including family history, recent drinking, 

sex, and age of drinking onset did not relate to the [CS+ > CS−] activation. Delay-tolerant choice 

and [CS+ > CS−] activation in right inferior parietal cortex were positively related.

Conclusions: Networks governing executive attention and reward showed enhanced responses 

to stimuli experimentally paired with intoxication, with the right parietal cortex implicated in both 

Corresponding Author: Brandon G. Oberlin, Ph.D., Department of Psychiatry, Indiana University School of Medicine, 355 W. 16th 
Street (GH 4800), Indianapolis, IN 46202, boberlin@iupui.edu, Tel: 317-963-7215. 

CONFLICT OF INTEREST: On behalf of all authors, the corresponding author states that there is no conflict of interest.

HHS Public Access
Author manuscript
Psychopharmacology (Berl). Author manuscript; available in PMC 2019 September 01.

Published in final edited form as:
Psychopharmacology (Berl). 2018 September ; 235(9): 2725–2737. doi:10.1007/s00213-018-4968-7.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/228066202?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


alcohol cue pairing and intertemporal choice. While different from our previous study results in 14 

men, we believe this paradigm in a large sample of male and female drinkers offers novel insights 

into Pavlovian processes less affected by idiosyncratic drug associations.
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classical conditioning; cue reactivity; associative conditioning; laboratory task; ethanol; BA 40; 
intertemporal choice; alcoholism; addiction

INTRODUCTION

Stimuli associated with intoxication attract attention and provoke activation in limbic and 

reward/motivation nodes such as orbitofrontal cortex, ventral striatum, and ventromedial 

prefrontal cortex (Chase et al. 2011; Kuhn and Gallinat 2011; Schacht et al. 2013), in 

addition to executive/attention areas in the medial and lateral frontal lobe and parietal cortex 

(Vollstädt-Klein et al. 2012). The vast majority of alcohol/drug cue reactivity studies to-date 

utilize familiar drug cues, such as images, odors, and tastes. However, a problem with such 

stimuli is that they can invoke unique conditioning histories and circumstances that vary by 

subject, and which can evoke behavioral changes related to alcohol, drinking history, and 

expectancies about alcohol’s influence on behavior (Freeman et al. 2010; Friedman et al. 

2007; Kramer and Goldman 2003). To eliminate the effects of idiosyncratic associations 

previously linked to intoxication, we sought to pair alcohol intoxication with neutral cues—

novel, abstract figures possessing no intrinsic conditioning history. Similar approaches have 

successfully elicited conditioned brain and behavioral responses using neutral cues paired 

with stimulants (Mayo and de Wit 2015; Mayo et al. 2013; Van Hedger et al. 2018) or 

alcohol (Mayo and de Wit 2016), demonstrating the utility of classical conditioning to 

intoxication in humans.

In a previous proof-of-concept study in a small sample of men (Kareken et al. 2012), we 

covertly paired alcohol infusion with geometric images (conditioned stimulus; CS) in a 

reaction time task that aimed to conceal the intent to associate the stimuli with intoxication. 

These conditioned stimuli were then tested for brain responses during functional magnetic 

resonance imaging (fMRI). We did not detect a behavioral indication of conditioning, as 

quantified by attentional bias (differential response time) to drug-paired cues. Expecting 

greater activation to the CS+ (when compared to the CS−) in limbic reward/motivation 

areas, we instead found reduced activation to the CS+ in dorsomedial PFC. Insofar as the CS 

were tested in the absence of alcohol intoxication, we interpreted the reduced CS+ activation 

as a prediction error signal, consistent with previous work showing reduced neural response 

in reward areas to unmet expectations (Schultz et al. 1997), including such as can occur in 

medial PFC/anterior cingulate (Alexander and Brown 2017).

Extending this previous work in a considerably larger and more heterogeneous sample of 

men and women, we employed here the same alcohol-cue pairing technique to: 1) replicate 

the originally published effects in a larger sample, and 2) determine if responses to the 

alcohol-paired CS+ are associated with alcoholism risk factors (familial alcoholism, recent 

drinking, self-reported personality measures, impulsive choice behavior). Utilizing a sample 
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containing both sexes and a wider range of drinking should enable greater power to detect 

correlations with risk factors. As our original findings suggested prediction error effects in 

heavy drinkers, we therefore sought to test the hypothesis that elevated alcohol risk factors 

would correlate with larger prediction error effects (a depressed CS+ signal) in dorsomedial 

prefrontal areas. However, as is apparent in the results below, we did not replicate reduced 

activation to the CS+ in dorsomedial PFC, as in the original report. To better understand our 

current results, we performed whole-brain analyses to search for CS+ effects in brain circuits 

involved in reward, attention, and associative conditioning in a system comprising cortical 

(orbitofrontal, dorsolateral, and parietal), and striatal regions (Jarbo and Verstynen 2015). 

We then related alcoholism risk factors to the observed CS+ responses.

MATERIALS AND METHODS

Subjects

Subjects signed informed consents prior to study procedures, all of which were approved by 

the Indiana University Institutional Review Board. Sixty right-handed drinkers (Table 1) 

were tested in what they were told was a study of how alcohol and other drugs affected 

reaction time (RT). We largely recruited heavy drinkers, defined as drinking harmful 

amounts (Gunzerath et al. 2004) at least twice/month, although some moderate drinkers 

were included to provide a range of drinking for correlational analyses. Exclusions included 

contraindications for MRI, pregnancy, head injury with loss of consciousness, DSM-IV Axis 

I diagnoses or current psychotropic treatment, desire for alcohol use disorder treatment, 

current or prior dependence on illicit drugs, or a positive urine screen for commonly abused 

drugs (exception: one subject tested positive for marijuana, but showed no acute 

manifestation of altered mental state). The 35-day Timeline Followback self-report (TLFB; 

Sobell et al. 1986) from the in-person interview was used to estimate recent drinking, and 

the Alcohol Use Disorders Identification Test (AUDIT; Saunders et al. 1993) assessed 

alcohol-related problems. Drinks per week and drinks per drinking day were scaled by total 

body water to account for differences in body weight. The Semi-Structured Assessment for 

the Genetics of Alcoholism (SSAGA; Bucholz et al. 1994) captured a lifetime DSM5 

alcohol use disorder (AUD) symptoms, with a cutoff of 3 or more symptoms used to classify 

probable AUD. Personality traits relevant to AUDs were assessed with the I7 Impulsiveness 

Questionnaire (Eysenck et al. 1985), the Sensation Seeking Scale-V (Zuckerman et al. 

1978), and an antisocial behavior count derived from the SSAGA (Oberlin et al. 2012). 

Eleven subjects (18.3%) met criteria for a lifetime diagnosis of AUD. All had breath alcohol 

(BrAC) measurements of 0.000 upon admission for the study. Given the 1½ day procedure, 

the three participating smokers were allowed to smoke between experimental periods to 

avoid nicotine withdrawal. One subject’s age of first intoxication was missing from the 

SSAGA interview, and was excluded from the principal components analysis described 

below.

Procedures

On study day one, subjects underwent conditioning comprised of two infusion sessions 

during which they performed what they were told were RT tasks. BrAC of 0.000 was 

verified before both conditioning sessions. The instructions noted that these tests were to 
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determine the RT effects of several drugs: alcohol, saline, caffeine, or antihistamine. In 

actuality, only alcohol or saline was administered, with caffeine and antihistamine 

mentioned solely to obfuscate expectations (Conrad et al. 2012). After conditioning to 

alcohol and saline in separate counterbalanced sessions (9:30AM and 2:30PM), subjects 

stayed overnight in the Indiana Clinical Research Center, and underwent fMRI the next 

morning (9:15AM).

Intravenous infusion.—Alcohol and saline infusion employed physiologically based 

pharmacokinetic modeling (O’Connor et al. 1998), which used height, weight, gender, and 

age to create standardized alcohol exposure profiles for all subjects. The infusions (6% 

alcohol in half-normal saline or saline alone) were conducted with the subject alone in a 

sound-proof booth while seated in a recliner; communications with experimenter used a 

microphone and speaker. A video camera placed in the booth allowed monitoring of the 

subject during conditioning. Infusion pulses were interleaved with jittered 16-min resting 

periods, during which the subject could read. Subjects were alerted 1–2 min in advance of 

the upcoming infusion pulse. Each pulse (six per conditioning run) targeted an especially 

rapid (and thus salient) breath alcohol concentration (BrAC) ascent of 0.017 g/dL in 200 sec, 

and a final peak of 0.045 g/dL in 83.5 minutes (see Figure 1a for modeled profiles). BrAC 

was measured at the peak of the sixth infusion pulse with a Dräger Alcotest® 6510 breath 

meter.

RT Visual probe task (cue conditioning).—Visual stimuli were conditioned (paired) 

with alcohol or saline during the disguised RT task, although subjects were not informed of 

the true nature of the stimulus-infusion pairing. The sole purpose of conditioning was to 

associate a visual stimulus with either intoxication or saline. Cues were presented during the 

infusion ascending to each peak, such that CS+ cues were always paired with the ascending 

limb of the BrAC curve (and CS− cues with saline infusion), but not the BrAC peak per se. 

During the task (e.g., see Field et al. 2004), subjects saw a CS and an adjacent asterisk, both 

of which disappeared to reveal a green arrow (response probe) that required a timed button-

press to identify the arrow’s direction; see Figure 1b and Kareken et al., (2012). During each 

conditioning session subjects saw only two cue types: the cue associated with that condition, 

(CS+ or CS−) and the asterisk distractor. Conditioned stimuli (CS+ paired with alcohol, CS− 

with saline) were presented 20 times in a given conditioning run during a single infusion 

pulse. Six infusion pulses were delivered per infusion session, yielding a total of 120 

individual cue presentations per infusion session. An irrelevant CS (CSi) was employed for a 

20 trial task practice prior to infusion, and the symbols assigned to CS+, CS−, and CSi 
(Figure 1c) were counterbalanced across subjects. The side of the CS+ and CS−, the side of 

the response probe, and whether the probe was hidden by a CS or asterisk were 

counterbalanced and matched for frequency. Conditioning was performed with a trackball 

device similar to the MRI-compatible fiber-optic response box (Current Designs, 

Philadelphia, PA) used during imaging. The trackball was oriented 90° such that ‘up’ and 

‘down’ indications corresponded to the left and right buttons, respectively to mimic how the 

trackball was held during the subsequent fMRI.
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Subjective perceptions.—At the peak of each of the six infusion pulses, subjects rated 

craving and perceived drug effects. Subjects rated “How intoxicated do I feel right now?”, 

“How stimulated do I feel right now?”, and “How sedated do I feel right now?” on a visual 

analog scale (VAS) anchored by “Not At All” at zero to “Extremely” at 10. Subjects also 

rated subjective drug effects, i.e. “How many alcoholic beverages do I feel I have had?”, 

“How many caffeinated beverages do I feel I have had?”, and “How many antihistamine pills 

do I feel I have had?” with responses incremented in units of 0.5 drinks or pills ranging from 

0 to 10+. These scales were displayed again during imaging. All subject responses were 

logged by a trackball device during conditioning (Logitech, Newark, CA) and fMRI 

(Current Designs, Philadelphia, PA). After fMRI, subjects reported which infusate they 

thought they received during each of the conditioning sessions, and fMRI. Two subjects did 

not report assessments of what they thought to be in their infusates (post-scan).

Delay discounting.—Impulsive choice was quantified with a monetary discounting task, 

which subjects performed while seated in the lab at 9:00AM on Day 2. Delayed money 

amounts of $20 and $200 were used with delays of 2 days, 1 week, 1 month, 6 months, 1 

year, and 5 years. Subjects were told that one of their choices would be chosen at random 

and paid according to their selection. For each delay, the immediate amounts were initially 

half the delayed, and adjusted on subsequent trials by halves (Du et al. 2002). For example, a 

trial is presented as, “Which would you prefer: $10 today OR $20 after 6 months”. If the 

subject chose the delayed option in the current example, the options for the next trial (within 

that amount/delay combination) would be “$15 today OR $20 after 6 months”. Amount/

delay combinations and the side of the screen on which the options were presented were 

pseudorandomized. Subjects completed sixty trials—five trials for each of the six delays, 

duplicated for the two amounts. The task took approximately 10 minutes to complete, and 

choice behavior could not shorten the task length. Forty-six subjects yielded usable 

discounting data. Among the remaining fourteen subjects, three were excluded for 

nonsystematic discounting (per Johnson and Bickel 2008), two were lost to technical 

problems, and nine completed their study participation before the task implementation was 

feasible.

fMRI Methods

RT probe task presentation.—During fMRI, subjects performed a probe task similar to 

the conditioning paradigm with one major difference: all three CS symbols were presented 

during each scan (6:19 min). This task was designed to elicit a conditioned response to the 

symbols previously paired with alcohol. Each symbol was presented 16 times per scan (16 * 

3 = 48 symbol presentations per scan), with ordering and inter-stimulus time jittering (3–13 

sec) scheduled by OptSeq2 (http://surfer.nmr.mgh.harvard.edu/optseq/), a tool to optimize 

rapidpresentation event-related fMRI design. Stimuli were back-projected onto a screen at 

the rear of the scanner bore, which subjects viewed with the head coil mirror. To preserve 

expectations as during conditioning, subjects retained their IV cannulae during imaging and 

were told that they could again receive any of the drugs. However, no infusion was delivered 

during the imaging, and the IV pumps remained off. Implicit visual attention biases were 

inferred by assessing differential RTs between cue conditions (e.g. shorter RTs when the CS

+ appeared on the same side as the arrow probe, relative to the CS−).
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Image acquisition.—Four blood oxygenation level dependent (BOLD) functional scans 

were acquired on a Siemens 3T Magnetom Skyra (Erlangen, Germany) scanner using a 20-

channel head coil array: echo planar imaging (EPI), gradient echo, 183 BOLD volumes, 

repetition/echo time TR/TE=2100/29ms, flip angle 77°, matrix 80×80, 35 interleaved 3.2mm 

thick slices, 2.75 × 2.75 × 3.2mm3 voxels, and GRAPPA acceleration factor 2. A high 

resolution anatomical scan (1.05 × 1.05 × 1.2mm3 voxels, 3D magnetization prepared rapid 

gradient echo; MPRAGE) was used to position slices for subsequent BOLD scans. A 

gradient echo field mapping scan (TR=500ms, TE1/TE2=5.00/7.46ms) with an imaging 

volume and voxel size identical to BOLD EPI was acquired immediately before the first 

BOLD scan. This 1:31 min scan with an advanced B0 shim mode adjustment optimized the 

field homogeneity and facilitated the BOLD EPI volume distortion evaluation and 

unwarping, allowing improved localization most notably in frontal areas. Subjects’ head 

movement and motion-related artifacts were minimized by using foam pads and real time 

prospective acquisition motion correction (Thesen et al. 2000), with additional steps 

accounting for head motion as detailed in the image analysis section.

Image analysis.—Image preprocessing and all analyses utilized SPM8 (Wellcome 

Department of Imaging Neuroscience, University College, London, UK), except for BOLD 

volume unwarping and motion outlier tagging performed in FSL (FMRIB Software Library 

v 5.0.9, Oxford, UK; Smith et al. 2004). Image preprocessing of functional EPI scans 

included BOLD volume unwarping using FSL’s topup/applytopup with slice-time 

acquisition correction, rigid-body realignment, and co-registration implemented in SPM8. 

Each subject’s MPRAGE structural MRI was segmented in SPM8, with those 

transformation parameters used to convert BOLD volumes into Montreal Neurological 

Institute (MNI) stereotactic space. The resulting normalized volumes were interpolated to 

2mm/side isotropic voxels and smoothed by a 6mm full-width at half-maximum isotropic 

Gaussian kernel. Within-subject fixed effects of BOLD response to CS trials were estimated 

using SPM’s canonical hemodynamic response function. CS+, CS− , and CSi conditions 

were modeled to have an onset coinciding with the symbol appearance and duration of 3 sec. 

The model regressors included six head motion parameters from the SPM8 realignment step 

and two FSL metrics (frame displacement and DVARS from fsl_motion_outliers) 

recommended for tagging outlier BOLD volumes corrupted by large motion (Power et al. 

2012). An autoregressive AR(1) model accounted for serial correlations with a high-pass 

filter set to (1/128 Hz) to remove low-frequency noise. Random effects SPM models focused 

on CS+ and CS− in a 2 (CS type) × 4 (scan) SPM factorial model.

Statistics

Non-imaging statistics employed SPSS 24 (IBM Corp., Armonk, NY). Alpha was set to 0.05 

for non-imaging analyses; in-text means are ± standard deviation, unless noted.

Component extraction of self-report scales.—To condense risk factors, principal 

components analysis (PCA) with Varimax rotation and the Kaiser criterion was used for 

variable reduction on recent drinking (normalized by total body water to account for body 

size differences), drinking problems, early use risk, and personality inventories. Individual 

measures were assigned to components based on loadings > 0.6.
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RT probe task: conditioning.—A 2 (order; alcohol first, saline first) × 2 (infusion; 

alcohol, saline) × 6 (run) mixed ANOVA assessed alcohol or order effects on accuracy and 

median RT.

RT probe task: imaging.—To assess for effects of classical conditioning on implicit 

attention, we performed a 2 (CS/probe side; same, opposite) × 3 (CS type; CS+, CS− , and 

CSi) within-subjects ANOVA on median RT and accuracy of responses to probes during 

scanning. Subjects’ correct identification of alcohol or saline infusates (reported after 

imaging) was determined with χ2 tests of goodness of fit against chance (25%).

Delay discounting.—Discounting behavior was quantified using hyperbolic regression:

V = A
1 + kD

The subjective value (indifference point) V equals the amount of the delayed option A 
divided by the denominator (1 + fitted parameter k times delay D); k indexes slope such that 

larger values indicate greater preference for immediate rewards (Mazur 1987). Values of k 
were calculated for both $20 and $200, and normalized by natural-log transformation.

Subjective perceptions.—A 2 (infusion) × 7 (timepoint: baseline and six infusion 

pulses) repeated-measures ANOVA assessed differences in perceptions during infusion; 

significant interactions were followed by paired t-tests to identify differing time points.

fMRI: We examined alcohol conditioned responses within a reward/attention/executive 

system likely to be engaged by a reward conditioning task requiring attentiveness and 

executive function (dorsolateral frontal, parietal, and orbitofrontal cortices and striatum; 

Jarbo and Verstynen 2015). The frontoparietal network (comprised of dorsolateral frontal 

and parietal cortices) is implicated in a range of functions; flexibility, inhibition, working 

memory, initiation, planning, and vigilance (meta-analysis of 193 studies; Niendam et al. 

2012); i.e., abilities required by the present task. The orbitofrontal network forms 

associations between sensory representations of stimuli and value outcomes for drug (and 

non-drug) reward, illustrated by reinforcer devaluation studies with food (Kringelbach et al. 

2003; Kringelbach and Rolls 2004). Regarding alcohol specifically, the flavor of a preferred 

beer (i.e., a naturalistic alcohol CS) activates bilateral OFC relative to an appetitive control 

(Oberlin et al. 2016), demonstrating orbitofrontal involvement in conditioned drug reward. 

The striatum, especially the ventral striatum, responds to drug-conditioned stimuli (Oberlin 

et al. 2013; Schacht et al. 2013), is key to reinforcement learning (Schultz et al. 1997), and 

heavily connected with cortical regions important to reward, attention, executive function, 

and action (Haber and Knutson 2010; Jarbo and Verstynen 2015). Together, these linked 

networks form a system adapted to detecting, attending to, and acting on reward (Sesack and 

Grace 2010), and which should respond to classically conditioned alcohol stimuli. We 

selected cortical regions of interest defined in resting state fMRI (17 networks; Yeo et al. 

2011); Frontoparietal (networks 12 and 13), and Orbitofrontal (network 10). The striatal ROI 

was defined by Mawlawi et al. (2001).
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fMRI:BOLD responses to alcohol conditioned stimuli.—The contrasts of greatest 

interest involving infusion-paired stimuli, i.e. [CS+ > CS−], were included in the random 

effects SPM model. Statistical significance was inferred at the cluster level (pFWE<0.05) 

using family wise error (FWE) correction for multiple comparisons across the whole brain, 

with cluster forming height threshold set to p= 0.001, uncorrected (Eklund et al. 2016). To 

assess the possible contributions from smokers or subjects who satisfied criteria for a 

lifetime DSM AUD diagnosis, we performed the analysis with those subjects removed, for 

ns = 57 and 49, respectively. Potential extinction effects were assessed using within-subjects 

ANOVA (4 scans) on mean [CS+ > CS−] values from significant clusters of activation. As 

alcohol-attenuated encoding of the CS+ could make it novel relative to the CS− cue, cue 

novelty effects were separately examined by comparing the CSi to CS−. Effects of infusion 

order were assessed with t-test in subjects receiving alcohol first (n = 31) vs. saline first (n = 

29).

fMRI:BOLD correlation with other factors.—We tested for relationships between 

alcoholism risk factors and BOLD contrasts of interest using voxelwise correlations with 

family history, AUD risk factors/personality (from PCA), and delay discounting behavior. 

Family history was tested as both a correlation (ordinal ranking of genetic risk by degree of 

relatedness; zero AUD relatives = 0, 2nd degree AUD relatives only = 1, 1st degree AUD 

relatives = 2) and as extremes (subjects with zero AUD relatives vs. subjects with first 

degree AUD relatives). To capture correlations relevant to the conditioned response to 

alcohol-paired stimuli, we limited the search region to responding voxels from the [CS+ > 

CS−] contrast, within network regions.

Comparison with previous conditioning study.—To address the possibility of 

sample effects, we assessed the similarity of the current sample population relative to our 

prior study (Kareken et al. 2012) by testing for the equivalence of demographic and drinking 

variables. Sex, family history of alcoholism, and race were assessed with χ2 tests of 

independence; age and education with t-tests; and recent drinking (drinks per week, heavy 

drinking days per week, drinks per drinking day, AUDIT) and drinking age (age of first 

drink, age of first intoxication, age of regular drinking) were tested with mixed ANOVA 

using study as the between-subjects factor. Means are reported collapsed across levels in the 

absence of interactions; main effects or interactions with study are summarized in 

Supplemental Table S1. Factors that differed were then tested in the current neuroimaging 

data to assess their possible influence on non-replication.

RESULTS

Pavlovian Conditioning

Ethanol infusion and perceptions.—The measured BrAC mean of 0.044 ± 0.007 g/dL 

(at the end of alcohol conditioning) closely matched the target peak BrAC of 0.045 g/dL. 

Significant main effects and interactions were detected for subjective intoxication, sedation, 

and number of drinks (Fs(6,354) > 2.66, ps < 0.018). Successive alcohol infusion pulses 

increased the number of alcoholic drinks perceived (paired tests: ts(59) > 5.4, ps < 0.001), 

feelings of intoxication (ts(59) > 5.0, ps < 0.001), and sedation (ts(59) > 2.4, ps < 0.018 for 
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the last two infusion pulses); only a main effect of infusion was present for stimulation 

(F(1,354) = 15.1, p < 0.001); Figure 2. Perceived effects from other drugs (caffeine or 

antihistamine) were not present, interaction ps > 0.3. Post-scan, 69% of subjects correctly 

identified alcohol as the infusate for the CS+ conditioning session (χ2 (3, N=58) = 144.5, p 
< 0.001 relative to chance), but subjects identified saline at chance rates (p > 0.2), with only 

36% of subjects correctly naming saline as the infusate for the CS− session (52% named 

caffeine or antihistamine).

RT probe task: conditioning.—Neither infusate nor infusion order affected response 

accuracy during cue pairing (main effects and interactions, n = 60, ps > 0.19), with mean 

accuracies of 97.2 ± 2.3% and 97.5 ± 1.9% for alcohol and saline, respectively.

RT probe task: imaging.—Neither conditioning (CS) nor side congruence (CS on the 

same or opposite side as probe) affected median RT or accuracy (n = 60, ps > 0.24 and 0.38, 

respectively), with the interactions of CS × side congruence being non-significant (ps > 

0.33). Collapsed across side, mean RTs were 491 ± 92, 491 ± 92, and 489 ± 94 msec for CS

+, CS−, and CSi respectively; with mean accuracy of 97.6 ± 2.0%.

Personality scales and drinking data

Component extraction.—Fifteen self-reported drinking and personality factors reduced 

to five components with eigenvalues > 1.0; Recent drinking/drinking problems, Impulsive/

antisocial, Age of drinking onset, Thrill-seeking, and Experience seeking (n = 59); Table 2.

fMRI

Differential activation from geometric symbols.—The symbols, without regard to 

CS assignment, showed no main effect of symbol type in n = 60. Thus, the individual 

symbols alone, independent of CS assignment, were equivalent in regional activation.

Activation to alcohol-conditioned cues.—CS+ (relative to the CS−) elicited 

distributed activation in the frontoparietal, attentional, and orbitofrontal networks (Table 3 

and Figure 3a,b; also see Supplemental Table S2 for extended results). There was no 

significant activation either in the striatum, or as in our prior report (Kareken et al. 2012), in 

the [CS− > CS+] contrast. Mean activation did not differ by scan in the full sample, n = 60, 

F(3,177) = 1.45, p = 0.23. The effect of CS+ by scan and cluster are illustrated in 

Supplemental Figure S1. Removing AUD subjects had little effect: the right supramarginal 

gyrus result dropped to trend level (n = 49, peak voxel at [46, −38, 54], Z = 3.71, p < 0.001, 

extent = 113, pFWE = 0.102), but the other five clusters remained significant. Interestingly, 

the left orbitofrontal cortex exceeded the significance threshold, (peak voxel at [−26, 36, 

−18], Z = 4.67, p < 0.001, extent = 156, pFWE = 0.032). Removing smokers yielded similar 

results, with all six clusters from Table 3 meeting significance, and an additional significant 

cluster in the left middle frontal gyrus (n = 57, peak voxel at [−34, 52, 12], Z = 3.88, p < 

0.001, extent = 157, pFWE = 0.031). There were no effects of infusion order, pFWEs > 0.99.

Novel cue effects.—The [CSi > CS−] revealed no activation overlapping with the [CS+ > 

CS−] results, and no results were detected in the [CS− > CSi] contrast.
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Correlation of activation with delay discounting.—Preference for delayed money (ln 
k, $20) correlated with a cluster of [CS+ > CS−] activation in the right inferior parietal 

cortex (supramarginal gyrus, BA 40, frontoparietal network, n = 46, peak voxel at [46, −44, 

46], Z = 3.35, p < 0.001, extent = 13; Figure 4). The $200 amount was qualitatively similar 

(peak [46, −44, 46], Z = 3.40, p < 0.001, extent = 9). Preference for immediate money was 

uncorrelated with [CS+ > CS−] activation.

Correlation of activation with alcoholism risk factors.—Family history, either as a 

continuum or extremes, was uncorrelated with activation. None of the five AUD risk/

personality components derived from PCA correlated with [CS+ > CS−], either positively or 

negatively (n = 49).

Comparison of factors differing by study and imaging.—Although our previous 

study showed significant [CS− > CS+] medial frontal activation, the present study did not 

replicate that finding. Factors that differed between studies were sex, χ2 (1, N=74) = 8.29, p 
= 0.004; heavy drinking days per week, t(72) = 2.67, p = 0.009; AUDIT, t(72) = 2.70, p = 

0.009; drinking age, t(71) = 2.04, p = 0.045; FH, χ2 (1, N=73) = 6.29, p = 0.012 (one 

subject was FH unknown), age, t(72) = 3.11, p = 0.003; education, t(72) = 2.38, p = 0.020; 

and race , χ2 (1, N=68) = 7.23, p = 0.007, see Supplemental Table S1 for means and 

summary. These factors were tested in the current (larger) imaging data set (n = 60) to 

evaluate their possible role in explaining the differing results. As examined in t-tests of the 

[CS+ > CS−] contrast, the factors of sex, family history, or race (white vs. others [n=11]) did 

not affect the direction of the CS effect, nor did the BOLD contrast effect correlate with, or 

change according to, heavy drinking days/week, AUDIT, drinking age, education, or age.

DISCUSSION

The principal value of a method for creating conditioned associations between novel, neutral 

stimuli and alcohol intoxication is the capacity to control learning with greater experimental 

precision. This avoids varied, uncertain learning histories and idiosyncratic associations that 

exist with previously conditioned stimuli (e.g., a picture of a beer glass). Our small (n=14) 

proof of concept study (Kareken et al. 2012) suggested that when the BOLD fMRI response 

to stimuli experimentally paired with the rapidly rising limb of intravenously infused alcohol 

was measured in extinction, there was drop in CS+ activity in medial frontal cortex. This 

suggested a kind of prediction error from CS+ presentation during non-reinforcement 

(Schultz et al. 1997). Using virtually identical methods, this considerably larger (n=60) 

sample including both sexes did not replicate that preliminary result. Using a strict whole-

brain corrected statistic with a robust cluster definition (Eklund et al. 2016), we show here 

that, in and of themselves, the geometric forms used for stimuli induced essentially 

equivalent activation. However, those stimuli that were associated with alcohol intoxication 

(CS+) elicited significantly greater activation in a fronto-parietal attentional network. By 

contrast, there were no regions in which CS-activation induced greater activation than CS+ 

stimuli. The resulting activation associated with the CS+ was nevertheless unrelated to 

drinking and alcoholism risk factors. The outcomes of this line of work offer some 

perspective on the challenges of measuring the human brain response to stimuli associated 

with alcohol intoxication in the laboratory.
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As in the original study, we covertly paired novel visual stimuli with alcohol and saline 

infusions. Our current findings showed CS+ eliciting significant BOLD responses widely in 

frontoparietal and orbitofrontal regions relative to the CS−, suggesting a possible 

conditioned response. However, cue pairing did not result in differential speed of target 

identification as a function of CS interference, as would be predicted by behavioral 

conditioning. Subjects experienced the unconditioned stimuli (alcohol and saline) as 

intended, as evidenced by their subjective ratings and BrACs. Delayed money preference 

correlated with CS+ activation within the frontoparietal network. Alcoholism risk factors 

such as family history and other drinking and personality factors did not appear to mediate 

[CS+ > CS−] activation. As the symbols were presented in extinction, we might expect 

reduced [CS+ > CS−] by scan. We nevertheless failed to detect such effects. An alternative 

explanation for our findings is that the CS+ cue possessed some novelty due to attenuated 

encoding (intoxication during conditioning) relative to the CS− cue (conditioned while 

sober), but we did not detect novelty effects with the more novel (less frequently presented) 

CSi cue in the [CSi > CS−] contrast.

Stimuli successfully conditioned to intoxication should engage brain systems involved in: 1) 

object recognition/classification, 2) attention, 3) conditioned reward response, and 4) 

salience marking. Our CS+ elicited activation within frontoparietal and orbitofrontal, as well 

as salience networks (anterior cingulate and insula). The resulting frontoparietal [CS+ > CS

−] activity, especially in parietal cortex, suggests “top-down” attention in which subjects 

conduct a goal-directed search for visual stimuli (Corbetta et al. 2008; Corbetta and 

Shulman 2002) as required by the conditioning task. In particular, the brain’s attentional 

system has distinct dorsal and ventral elements, with the dorsal element thought to manage 

goal directed searching and executive activity, and the ventral dedicated to attentional 

orientation to unexpected events (the “bottom-up system”; Corbetta and Shulman 2002). 

More broadly, frontoparietal regions also strongly interconnect with other brain networks 

(Spreng et al. 2013), and govern a range of executive functions, including flexibility, 

inhibition, working memory, initiation, planning, and vigilance (Niendam et al. 2012; Seeley 

et al. 2007; Sridharan et al. 2008). While the stimuli paired with alcohol infusion provoked 

activation in the dorsal attention systems (including the frontal eye fields), saline paired 

stimuli showed no such BOLD increases (relative to CS+). Therefore, although the cue 

pairing was never made explicit to subjects, and CS presentation preceded the goal (response 

probe), we believe that the greater BOLD activity from the CS+ symbols suggests that these 

cues elicit a greater degree of attentional neural processing than the CS− symbols. While 

there was no separate control group lacking alcohol conditioning, equivalent activation 

across all stimuli in these areas (collapsing across infusion condition) lends credence to this 

interpretation.

The orbitofrontal network is deeply involved in valuation, evidenced by its correlated 

activation with imagined reinforcer value (see Sescousse et al. 2013 for meta-analysis) and 

subjective liking of food reinforcers (Kringelbach et al. 2003; Plassmann et al. 2010). 

Associative conditioning also involves orbitofrontal regions, as evidenced by activation to 

conditioned visual cues presented in the absence of unconditioned stimuli (Cox et al. 2005). 

We previously demonstrated similar bilateral orbitofrontal activation to a different alcohol 

CS; the taste of a favorite beer (Oberlin et al. 2016). These previous results were similar, 
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with the right OFC peak from that study [22 36 −14] falling within the current right OFC 

cluster. That prior study relied on drinking history to create the cue pairing (conditioning) as 

do most cue reactivity studies, while in the present context we experimentally induced the 

conditioning. Our current results within the salience network (Uddin 2015), i.e. the anterior 

cingulate cortex and anterior insula , comports with its known role in modulating attention 

by integrating sensory information and interoceptive states (Craig 2002; Damasio 1994). 

This enables organisms to respond correctly to stimuli (Seeley et al. 2007) by co-activating 

with frontoparietal systems, and assisting in keeping the most appropriate network active 

(Sridharan et al. 2008). The current paradigm might then be expected to engage such 

attention-modulating systems, as adaptive brains require efficient evaluation of reinforcers in 

the environment and the capacity to direct attention to the most salient features.

A large body of previous work implicates the inferior parietal lobule (IPL; including 

supramarginal gyrus/ BA 40) in intertemporal choice tasks (Clithero et al. 2009; Luhmann et 

al. 2008; McClure et al. 2004; Peters and Büchel 2010; Stoeckel et al. 2013; Wittmann et al. 

2007). These tasks involve executive attention for valuation of abstract rewards. Our findings 

reveal that right IPL [CS+ > CS−] activation correlates with greater preference for delayed 

money in delay discounting. Insofar as we know the IPL to activate to all choice types 

during delay discounting tasks, the data here suggest that patient subjects (shallow 

discounters) may be those whose attentional networks respond more to salient stimuli—

here, mental representations of reward either conditioned (CS+) or imagined (monetary). 

Exploring this hypothesis further would require imaging of both tasks.

Naturalistic cues for alcohol and other drugs activate a number of limbic and cortical foci in 

heavy users, including the striatum, amygdala, thalamus, pallidum, inferior parietal lobule, 

middle frontal gyrus, insula, anterior and posterior cingulate cortex, middle frontal gyrus, 

and others (meta analyses: Engelmann et al. 2012; Kuhn and Gallinat 2011; Schacht et al. 

2013), with the anterior cingulate and ventral striatum being largely consistent across many 

studies. Our anterior cingulate result is analogous to the naturalistic cue findings, suggesting 

that the salience marking performed in the cingulate during drug associative conditioning 

may be unspecific to particular cue characteristics, such as context, odor, or visual 

properties. We did not observe effects in the ventral striatum, as might be expected from 

prior work, although we did find sub-threshold activation (peak [8, 14, −2], Z=3.00, p=.001, 

k = 4). However, the neutral cues used here are more similar to another conditioning study 

showing orbitofrontal, but not striatal, activation to CS+ presented in extinction (Cox et al. 

2005).

While we detected activation in attentional brain systems, the CS+ did not induce a 

behaviorally detectable attentional bias in this sample relative to the CS−. The absence of 

conditioned behavioral responses suggests that we were unable to detect classical 

conditioning in the conventional sense. However, attentional biases in similar paradigms 

tend to be small—less than 20 msec reaction time enhancement by drug cues (Bradley et al. 

2004; Lubman et al. 2000; Townshend and Duka 2001). The ideal behavioral assessment 

would measure conditioned responses under exactly the same conditions as during 

conditioning, however our primary goal of measuring neural responses precluded this 

design. Test-retest correlation of RT tasks in vs. out of the scanner can be modest (e.g., 
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Weafer et al. 2017), likely due to noise and awkward positioning required by scanning. We 

might have increased sensitivity to conditioned responses with behavioral retesting after 

fMRI in the identical context as conditioning. Another possible explanation for our 

insensitivity to attentional bias with conditioned (intrinsically neutral) stimuli is simply the 

amount time spent in cue pairing. Our subjects experienced 120 2-sec CS presentations 

during alcohol infusion (4 min total cue pairing time), while naturalistic cues utilizing real-

world conditioning, i.e. drinking (used in most studies) presumably involve many hours of 

CSUS pairing in heavy drinkers. Utilizing naturalistic cues, while uncontrolled, takes 

advantage of the robust CS-US pairing inherent to a long drinking history and likely 

enhances detecting attentional biases. Recent work utilizing neutral cues have demonstrated 

conditioning in just two CS+ conditioning sessions (Mayo and de Wit 2015; Mayo and de 

Wit 2016; Mayo et al. 2013; Van Hedger et al. 2018), but these studies used 60 minutes of 

CS+ cue pairing, which likely generated more robust conditioning than the current study. 

Another possible mediator of the lack of behavioral conditioning is explicit awareness of 

conditioning. Awareness of the conditioning contingencies could have affected behavioral 

and/or neural conditioned responses, but we did not explicitly ask subjects about their 

awareness.

The non-replication of the original study (Kareken et al. 2012) could be influenced, in 

theory, by different sample characteristics (detailed in Supplemental Table S1). The most 

notable demographic differences were sex (the previous study included only males) and 

drinking factors (we previously tested heavier drinkers with greater family history load). 

However, these do not obviously mediate the non-replication, as none of these factors 

changed the results in the current study when tested individually. There were minor 

experimental design changes in the current study: 1) we obfuscated the infusion type 

(subjects were instructed that they could receive ‘alcohol, saline, caffeine, or antihistamine’, 

while the prior study’s instructions exclusively referred to alcohol and saline), and 2) minor 

differences in data acquisition (3T Trio vs Skyra) and fMRI analyses (such as better 

accounting for BOLD outliers). However, we re-analyzed data from the prior study using the 

present fMRI methods and found that the results were qualitatively similar to the original 

processing stream. In the end, we are left with greater confidence in the larger (n=60 vs. 

n=14), more representative, and better characterized data set; the original study may have 

simply been underpowered.

This systems-level response to alcohol-paired cues, although differing from the original 

study, offers some perspective on this experimental approach to understanding the brain 

response to alcohol-associated stimuli. The present findings suggest (with the caveats above) 

that neutral stimuli might be covertly conditioned to alcohol intoxication, and that the 

resulting CS+ can induce differential activity in brain networks involving attentional/

cognitive executive function (object recognition/classification, attention; frontoparietal 

network), reward/value perception (value magnitude and valence; orbitofrontal network), 

and stimulus importance (salience network). Further, activation within the frontoparietal 

network correlated with intertemporal choice behavior, implicating an area common to both 

alcohol cue conditioning and decision making, and suggesting BA 40’s involvement in two 

processes important to addiction—although we note that these neural processes may not be 

specific to addiction. We believe that addiction pathology involves conditioning mechanisms 
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in addition to learning, motivation, reward, and cognitive processes, and argue that studying 

drug cue conditioning processes in isolation might best be done using neutral cues (i.e. 

eliminating drug- or experience-specific features of conditioning). While we believe that 

controlled conditioning paradigms are key to parsing conditioned reward processes, future 

work will need to replicate these current findings, and test more directly for hypothesized 

regional attentional and salience mechanisms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Alcohol infusion/conditioning. CS symbol presentation (shaded bars) corresponded to 

rising brain alcohol concentration during six modeled infusion pulses; equivalent saline 

volume was infused during the saline session. Measured BrAC (mean ± SEM) at final peak 

for n=60 indicated as open diamond. (b) RT probe task. Subjects were repeatedly shown 

conditioned stimuli within a disguised “reaction time task”. The CS+ was paired with 

alcohol infusion, and the CS− was paired with saline. CSi was used in a practice session, but 

was not paired with infusion. (c) The three symbols that were randomly assigned to CS+, CS

−, or CSi conditions.
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Fig. 2. Perception of alcohol effects during conditioning.
Plots showing significant main effects of infusion or interactions with time. Ratings obtained 

at the end of the six infusion pulses (see Figure 1A) corresponded with the peak alcohol 

concentration for that pulse. “Baseline”= pre-infusion ratings. *significant interaction and 

difference, **all non-baseline points differ, †main effect of infusion.

Oberlin et al. Page 19

Psychopharmacology (Berl). Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Activation to alcohol conditioned stimuli [CS+ > CS−].
(a) Axial and (b) coronal activation maps illustrating BOLD response to alcohol conditioned 

(CS+) relative to saline-conditioned (CS−) stimuli in n=60 drinkers (red), relevant networks 

(yellow), and the overlap (orange); network labels on top. Display at puncorr < 0.001, extent 

= 20.
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Fig. 4. Patient choice (less impulsive) and correlated activation to CS+.
(a) Activation map showing the region of correlation between preference for delayed money 

(ln k: $20) and activation to CS+ (relative to CS−) in right parietal cortex (BA 40) within the 

frontoparietal network, n=46. The main effect of [CS+ > CS−] BOLD activation in BA 40 is 

shown in green outline; displayed at puncorr < 0.01, extent = 200. (b) The nature of the 

correlation is illustrated by mean extracted values from the functional cluster in (a), 

indicating that greater BA 40 activation during CS+ presentation corresponds to less 

impulsive decision making.
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Table 1

Subject Characteristics (n=60)

Mean (SD) Range n(%)

Male 36(60)

Caucasian
50(83)

g

Never smokers 15(25)

Recent smokers
a 18(30)

Family history positive
b 22(37)

Age 23.1 (1.6) 21–27

Education (years) 15.2 (1.4) 12–19

Drinks per week
c 14.6 (9.6) 5–54

Drinks per drinking day
c 5.2 (2.6) 1.6–12.3

Heavy drinking days per week
c,d 1.4 (0.9) 0.4–4.2

Age first drink
e 16.4 (1.8) 12–20

Age regular drinking
e 18.9 (1.6) 15–22

AUDIT
f 10.3 (3.9) 4–21

a
Last exposure within 6 weeks.

b
At least one first-degree relative with probable alcoholism.

c
From the Alcohol Timeline Followback Interview (TLFB).

d
Four/five or more drinks per day for female/male.

e
From the SSAGA.

f
Alcohol Use Disorders Identification Test.

g
Others; ns=5 black, 5 asian, 3 mixed-race.
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Table 2

Factor loadings by Component, n=59

Component

Factor

Recent
drinking &
problems

Impulsive/
antisocial

Age of
drinking onset Thrill-seeking Experience

seeking

Drinks per week
a,b 0.92 0.04 −0.06 0.07 0.05

Heavy drinking days per week
a,c 0.90 0.09 −0.06 0.19 −0.09

Drinks per drinking day
a,b 0.59 0.14 0.00 0.22 −0.47

AUDIT
d 0.84 0.12 −0.19 0.03 0.17

Age of first drink
e −0.04 −0.22 0.88 0.01 −0.19

Age of regular drinking
e −0.10 −0.17 0.67 −0.29 0.04

Age of first intoxication
e −0.16 −0.05 0.87 −0.17 −0.10

Antisocial behavior density
e 0.12 0.60 −0.07 0.10 0.40

I7 Impulsivity 0.16 0.76 −0.08 −0.01 0.15

I7 Venturesomeness 0.15 0.24 −0.16 0.86 0.16

I7 Empathy 0.07 −0.71 0.15 −0.10 0.16

SSS-V Thrill/Adventure 0.19 0.01 −0.21 0.87 0.13

SSS-V Experience seeking −0.03 0.06 −0.14 0.27 0.81

SSS-V Disinhibition 0.42 0.35 −0.20 0.14 0.43

SSS-V Boredom susceptibility 0.16 0.79 −0.13 0.12 −0.01

a
From the Timeline Followback Interview.

b
Scaled by total body water.

c
Four/five or more drinks per day for female/male.

d
Alcohol Use Disorders Identification Test.

e
From the SSAGA. Bold text: Factor loadings ≥ |0.6| in Varimax rotated solution.
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Table 3

BOLD responses to alcohol conditioned stimuli [CS+ > CS−]
1

MNI coordinate (mm)

  Region Network
2

Cluster size Peak Z x y z

Orbitofrontal cortex (R) FP, OF 188 5.06 26 32 −20

Anterior cingulate gyrus/medial superior
 frontal gyrus; BA8, 24, 32 FP 293 4.80 −4 28 42

Middle/superior frontal gyrus (L); BA6, 8 FP 321 4.39 −26 18 50

Supramarginal/angular gyrus (L); BA39, 40 FP, Sal 611 4.15 −62 −32 46

Rostral cingulate/medial superior frontal
 gyrus; BA32 DMN 243 4.15 4 44 8

Supramarginal gyrus (R); BA40 FP 179 3.82 46 −38 54

Results named by the anatomical extent of the cluster; height threshold, puncorr < 0.001, cluster corrected, pFWE < 0.05.

1
The [CS− > CS+] contrast produced no significant results.

2
Networks of primary interest: Frontoparietal (FP) and Orbitofrontal (OF). Other networks: Salience (Sal), Default Mode Network (DMN). MNI, 

Montreal Neurological Institute; R, right; L, left; BA Brodmann Area.

Psychopharmacology (Berl). Author manuscript; available in PMC 2019 September 01.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Subjects
	Procedures
	Intravenous infusion.
	RT Visual probe task (cue conditioning).
	Subjective perceptions.
	Delay discounting.

	fMRI Methods
	RT probe task presentation.
	Image acquisition.
	Image analysis.

	Statistics
	Component extraction of self-report scales.
	RT probe task: conditioning.
	RT probe task: imaging.
	Delay discounting.
	Subjective perceptions.
	fMRI:
	fMRI:BOLD responses to alcohol conditioned stimuli.
	fMRI:BOLD correlation with other factors.
	Comparison with previous conditioning study.


	RESULTS
	Pavlovian Conditioning
	Ethanol infusion and perceptions.
	RT probe task: conditioning.
	RT probe task: imaging.

	Personality scales and drinking data
	Component extraction.

	fMRI
	Differential activation from geometric symbols.
	Activation to alcohol-conditioned cues.
	Novel cue effects.
	Correlation of activation with delay discounting.
	Correlation of activation with alcoholism risk factors.
	Comparison of factors differing by study and imaging.


	DISCUSSION
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Table 1
	Table 2
	Table 3

