213 research outputs found

    Simple and Adaptive Particle Swarms

    Get PDF
    The substantial advances that have been made to both the theoretical and practical aspects of particle swarm optimization over the past 10 years have taken it far beyond its original intent as a biological swarm simulation. This thesis details and explains these advances in the context of what has been achieved to this point, as well as what has yet to be understood or solidified within the research community. Taking into account the state of the modern field, a standardized PSO algorithm is defined for benchmarking and comparative purposes both within the work, and for the community as a whole. This standard is refined and simplified over several iterations into a form that does away with potentially undesirable properties of the standard algorithm while retaining equivalent or superior performance on the common set of benchmarks. This refinement, referred to as a discrete recombinant swarm (PSODRS) requires only a single user-defined parameter in the positional update equation, and uses minimal additive stochasticity, rather than the multiplicative stochasticity inherent in the standard PSO. After a mathematical analysis of the PSO-DRS algorithm, an adaptive framework is developed and rigorously tested, demonstrating the effects of the tunable particle- and swarm-level parameters. This adaptability shows practical benefit by broadening the range of problems which the PSO-DRS algorithm is wellsuited to optimize

    Novelty-driven Particle Swarm Optimization

    Get PDF

    An approach to support generic topologies in distributed PSO algorithms in Spark

    Get PDF
    Particle Swarm Optimization (PSO) is a popular population-based search algorithm that has been applied to all kinds of complex optimization problems. Although the performance of the algorithm strongly depends on the social topology that determines the interaction between the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide limited support for topologies. In this paper, we present an approach to support generic topologies in distributed PSO algorithms within a framework for the development and execution of populationbased metaheuristics in Spark, which is currently under development.Facultad de Informátic

    Parameter selection and performance comparison of particle swarm optimization in sensor networks localization

    Get PDF
    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors\u27 memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm

    Particle swarm algorithm with adaptive constraint handling and integrated surrogate model for the management of petroleum fields

    Get PDF
    This paper deals with the development of effective techniques to automatically obtain the optimum management of petroleum fields aiming to increase the oil production during a given concession period of exploration. The optimization formulations of such a problem turn out to be highly multimodal, and may involve constraints. In this paper, we develop a robust particle swarm algorithm coupled with a novel adaptive constraint-handling technique to search for the global optimum of these formulations. However, this is a population-based method, which therefore requires a high number of evaluations of an objective function. Since the performance evaluation of a given management scheme requires a computationally expensive high-fidelity simulation, it is not practicable to use it directly to guide the search. In order to overcome this drawback, a Kriging surrogate model is used, which is trained offline via evaluations of a High-Fidelity simulator on a number of sample points. The optimizer then seeks the optimum of the surrogate model

    A Modular Hybridization of Particle Swarm Optimization and Differential Evolution

    Get PDF
    In swarm intelligence, Particle Swarm Optimization (PSO) and Differential Evolution (DE) have been successfully applied in many optimization tasks, and a large number of variants, where novel algorithm operators or components are implemented, has been introduced to boost the empirical performance. In this paper, we first propose to combine the variants of PSO or DE by modularizing each algorithm and incorporating the variants thereof as different options of the corresponding modules. Then, considering the similarity between the inner workings of PSO and DE, we hybridize the algorithms by creating two populations with variation operators of PSO and DE respectively, and selecting individuals from those two populations. The resulting novel hybridization, called PSODE, encompasses most up-to-date variants from both sides, and more importantly gives rise to an enormous number of unseen swarm algorithms via different instantiations of the modules therein. In detail, we consider 16 different variation operators originating from existing PSO- and DE algorithms, which, combined with 4 different selection operators, allow the hybridization framework to generate 800 novel algorithms. The resulting set of hybrid algorithms, along with the combined 30 PSO- and DE algorithms that can be generated with the considered operators, is tested on the 24 problems from the well-known COCO/BBOB benchmark suite, across multiple function groups and dimensionalities.Comment: 8 pages, 1 figure, to be published in GECCO 2020 Companio

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques
    corecore