
A modular hybridization of particle swarm optimization and differential
evolution
Boks, R.; Wang, H.; Bäck, T.

Citation
Boks, R., Wang, H., & Bäck, T. (2020). A modular hybridization of particle swarm optimization
and differential evolution. Gecco '20: Proceedings Of The 2020 Genetic And Evolutionary
Computation Conference, 1418–1425. doi:10.1145/3377929.3398123

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3716258

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3716258

A Modular Hybridization of Particle Swarm Optimization and
Differential Evolution

Rick Boks
Leiden Institute of Advanced

Computer Science
Leiden, The Netherlands

r.m.boks@umail.leidenuniv.nl

Hao Wang
LIP6, Sorbonne Université

Paris, France
hao.wang@lip6.fr

Thomas Bäck
Leiden Institute of Advanced

Computer Science
Leiden, The Netherlands

t.h.w.baeck@liacs.leidenuniv.nl

ABSTRACT

In swarm intelligence, Particle Swarm Optimization (PSO) and Dif-
ferential Evolution (DE) have been successfully applied in many
optimization tasks, and a large number of variants, where novel
algorithm operators or components are implemented, has been
introduced to boost the empirical performance. In this paper, we
first propose to combine the variants of PSO or DE by modularizing
each algorithm and incorporating the variants thereof as different
options of the corresponding modules. Then, considering the simi-
larity between the inner workings of PSO and DE, we hybridize the
algorithms by creating two populations with variation operators
of PSO and DE respectively, and selecting individuals from those
two populations. The resulting novel hybridization, called PSODE,
encompasses most up-to-date variants from both sides, and more
importantly gives rise to an enormous number of unseen swarm
algorithms via different instantiations of the modules therein.

In detail, we consider 16 different variation operators originating
from existing PSO- and DE algorithms, which, combined with 4
different selection operators, allow the hybridization framework
to generate 800 novel algorithms. The resulting set of hybrid algo-
rithms, along with the combined 30 PSO- and DE algorithms that
can be generated with the considered operators, is tested on the
24 problems from the well-known COCO/BBOB benchmark suite,
across multiple function groups and dimensionalities.

CCS CONCEPTS

· Computing methodologies → Continuous space search.

KEYWORDS

Differential Evolution, Particle Swarm Optimization, Metaheuris-
tics, Swarm Intelligence, Hybridization

ACM Reference Format:

Rick Boks, Hao Wang, and Thomas Bäck. 2020. A Modular Hybridization
of Particle Swarm Optimization and Differential Evolution. In Genetic and

Evolutionary Computation Conference Companion (GECCO ’20 Companion),

July 8ś12, 2020, Cancún, Mexico. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3377929.3398123

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GECCO ’20 Companion, July 8ś12, 2020, Cancún, Mexico

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7127-8/20/07. . . $15.00
https://doi.org/10.1145/3377929.3398123

1 INTRODUCTION

In this paper, we delve into two naturally-inspired algorithms,
Particle Swarm Optimization (PSO) [5] and Differential Evolution
(DE) [19] for solving continuous black-box optimization problems
f : Rn → R, which is subject to minimization without loss of gener-
ality. Here we only consider simple box constraints on Rn , meaning
the search space is a hyper-box [xmin

, xmax] =
∏n

i=1[x
min
i , xmax

i].
In the literature, a huge number of variants of PSO and DE has

been proposed to enhance the empirical performance of the respec-
tive algorithms. Despite the empirical success of those variants,
we, however, found that most of them only differ from the original
PSO/DE in one or two operators (e.g., the crossover), where usu-
ally some simple modifications are implemented. Therefore, it is
almost natural for us to consider combinations of those variants.
Following the so-called configurable CMA-ES approach [22, 23], we
first modularize both PSO and DE algorithms, resulting in a modu-
lar framework1 where different types of algorithmic modules are
applied sequentially in each generation loop. When incorporating
variants into this modular framework, we first identify the modules
at which modifications are made in a particular variant, and then
treat the modifications as options of the corresponding modules.
For instance, the so-called inertia weight [18], that is a simple mod-
ification to the velocity update in PSO, shall be considered as an
option of the velocity update module.

This treatment allows for combining existing variants of either
PSO or DE and generating non-existing algorithmic structures. It, in
the loose sense, creates a space/family of swarm algorithms, which
is configurable via instantiating the modules, and hence potentially
primes the application of algorithm selection/configuration [21]
to swarm intelligence. More importantly, we also propose a meta-
algorithm called PSODE that hybridizes the variation operators
from both PSO and DE, and therefore gives rise to an even larger
space of unseen algorithms. By hybridizing PSO and DE, we aim to
unify the strengths from both sides, in an attempt to, for instance,
improve the population diversity and the convergence rate. On
the well-known Black-Box Optimization Benchmark (BBOB) [7]
problem set, we extensively tested all combinations of four different
velocity updates (PSO), five neighborhood topologies (PSO), two
crossover operators (DE), five mutation operators (DE), and four
selection operators, leading up to 800 algorithms. We benchmark
those algorithms on all 24 test functions from the BBOB problem
set and analyze the experimental results using the so-called IOH-
profiler [4], to identify algorithms that perform well on (a subset
of) the 24 test functions.

1The source code is available at https://github.com/rickboks/pso-de-framework.

1418

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3377929.3398123&domain=pdf&date_stamp=2020-07-08

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico R. Boks et al.

This paper is organized as follows: Section 2 summarizes the
related work. Section 3 reviews the state-of-the-art variants of PSO.
Section 4 covers various cutting-edge variants of DE. In Section 5,
we describe the novel modular PSODE algorithm. Section 6 specifies
the experimental setup on the BBOB problem set. We discuss the
experimental results in Section 7 and finally provide, in Section 8,
the insights obtained in this paper as well as future directions.

2 RELATED WORK

A hybrid PSO/DE algorithm has been coined previously [25] to im-
prove the population diversity and prevent premature convergence.
This is attempted by using the DE mutation instead of the tradi-
tional velocity- and position-update to evolve candidate solutions
in the PSO algorithm. This mutation is applied to the particle’s
best-found solution pi rather than its current position xi , resulting
in a steady-state strategy. Another approach [8] follows the con-
ventional PSO algorithm, but occasionally applies the DE operator
in order to escape local minima. Particles maintain their velocity
after being permuted by the DE operator. Other PSO/DE hybrids
include a two-phase approach [16] and a Bare-Bones PSO variant
based on DE [15], which requires little parameter tuning.

This work follows the approach of the modular and extensible
CMA-ES framework proposed in [22], where many ES-structures

can be instantiated by arbitrarily combining existing variations of
the CMA-ES. The authors of this work implement a Genetic Algo-
rithm to efficiently evolve the ES structures, instead of performing
an expensive brute force search over all possible combinations of
operators.

3 PARTICLE SWARM OPTIMIZATION

As introduced by Eberhart and Kennedy [5], Particle Swarm Op-
timization (PSO) is an optimization algorithm that mimics the
behaviour of a flock of birds foraging for food. A particle in a
swarm of size M ∈ N>1 is associated with three vectors: the cur-
rent position xi , velocity vi , and its previous best position pi , where
i ∈ {1, . . . ,M}. After the initialization of xi and vi , where xi is
initialized randomly and vi is set to 0, the algorithm iteratively con-
trols the velocity vi for each particle (please see the next subsection)
and moves the particle xi accordingly:

xi ← xi + vi (1)

To prevent the velocity from exploding, vi is kept in the range
[−vmax1,vmax1] (1 is a n × 1 vector containing all ones). After
every position update, the current position is evaluated, fi = f (xi).
Here, pi stands for the best solution found by xi (thus personal best)
while gi is used to track the best solution found in the neighborhood
of xi (thus global best). Typically, the termination of PSO can be
determined by simple termination criteria, such as the depletion of
the function evaluation budget, as well as more complicated ones
that reply on the convergence behavior, e.g., detecting whether the
average distance between particles has gone below a predetermined
threshold. The pseudo-code is given in Alg. 1.

Algorithm 1 Original Particle Swarm Optimization

1: for i = 1→ M do

2: f besti ← f (xi)

3: xi ← U (xmin
, xmax), vi ← 0 ▷ Initialize

4: end for

5: while termination criteria are not met do
6: for i = 1→ M do

7: fi ← f (xi) ▷ Evaluate
8: if fi < f besti then

9: pi ← xi , f besti ← fi ▷ Update personal best
10: end if

11: if fi < f (gi) then

12: gi ← xi ▷ Update global best
13: end if

14: Calculate vi according to Eq. (2)
15: xi ← xi + vi ▷ Update position
16: end for

17: end while

3.1 Velocity Updating Strategies

As proposed in the original paper [5], the velocity vector in original

PSO is updated as follows:

vi ← vi +U (0,ϕ11) ⊗ (pi − xi) +U (0,ϕ21) ⊗ (gi − xi), (2)

whereU (a, b) stands for a continuous uniform random vector with
each component distributed uniformly in the range [ai ,bi], and ⊗
is component-wise multiplication. Note that, henceforth the param-
eter settings such as ϕ1,ϕ2 will be specified in the experimentation
part (Section 6). As discussed before, velocities resulting from Eq. (2)
have to be clamped in range [−vmax1,vmax1]. Alternatively, the
inertia weight [18] ω ∈ [0, 1] is introduced to moderate the velocity
update without using vmax:

vi ← ωvi +U (0,ϕ11)⊗(pi − xi) +U (0,ϕ21)⊗(gi − xi). (3)

A large value of ω will result in an exploratory search, while a
small value leads to a more exploitative behavior. It is suggested
to decrease the inertia weight over time as it is desirable to scale
down the explorative effect gradually. Here, we consider the inertia
method with fixed as well as decreasing weights.

Instead of only being influenced by the best neighbor, the velocity
of a particle in the Fully Informed Particle Swarm (FIPS) [14] is
updated using the best previous positions of all its neighbors. The
corresponding equation is:

vi ← χ
(

vi +
1

|Ni |

∑

p∈Ni

U (0,ϕ1) ⊗ (p − xi)
)

, (4)

where Ni is the number of neighbors of particle i and χ = 2/(ϕ−2+
√

ϕ2 − 4ϕ). Finally, the so-called Bare-Bones PSO [11] is a completely
different approach in the sense that velocities are not used at all
and instead every component xi j (j = 1, . . . ,n) of position xi is
sampled from a Gaussian distribution with mean (pi j + дi j)/2 and
variance |pi j − дi j |, where pi j and дi j are the jth component of pi
and gi , respectively:

xi j ∼ N
(

(pi j + дi j)/2, |pi j − дi j |
)

, j = 1, . . . ,n. (5)

1419

A Modular Hybridization of PSO and DE GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

3.2 Population Topologies

Five different topologies from the literature have been implemented
in the framework:

• lbest (local best) [5] takes a ring topology and each particle
is only influenced by its two adjacent neighbors.
• gbest (global best) [5] uses a fully connected graph and thus
every particle is influenced by the best particle of the entire
swarm.
• In the Von Neumann topology [12], particles are arranged in
a two-dimensional array and have four neighbors: the ones
horizontally and vertically adjacent to them, with toroidal
wrapping.
• The increasing topology [20] starts with an lbest topology
and gradually increases the connectivity so that, by the end
of the run, the particles are fully connected.
• The dynamic multi-swarm topology (DMS-PSO) [13] creates
clusters consisting of three particles each, and creates new
clusters randomly after every 5 iterations. If the population
size is not divisible by three, every cluster has size three,
except one, which is of size 3 + (M mod 3).

4 DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is introduced by Storn and Price in
1995 [19] and uses scaled differential vectors between randomly
selected individuals for perturbing the population. The pseudo-code
of DE is provided in Alg. 3.

After the initialization of the population (please see the next
subsection) P = {xi }Mi=1 ⊂ R

n (M is again the swarm size), for
each individual xi , a donor vector vi (a.k.a. mutant) is generated
according to:

vi ← xr1 + F · (xr2 − xr3) (6)

where three distinct indices r1 , r2 , r3 , i ∈ [1..M] are chosen
uniformly at random (u.a.r.). Here F ∈ [0.4, 1] is a scalar value called
the mutation rate and xr1 is referred as the base vector. Afterwards,
a trial vector x′i is created by means of crossover.

In the so-called binomial crossover, each component x ′i j (j =

1, . . . ,n) of x ′i is copied from vi j with a probability Cr ∈ [0, 1]
(a.k.a. crossover rate), or when j equals an index jrand ∈ [1..n]
chosen u.a.r.:

x ′i j ←

{

vi j ifU (0, 1) ≤ Cr or j = jrand
xi j otherwise

(7)

In exponential crossover, two integers p, q ∈ {1, . . . ,n} are cho-
sen. The integer p acts as the starting point where the exchange of
components begins, and is chosen uniformly at random. q repre-
sents the number of elements that will be inherited from the donor
vector, and is chosen using Algorithm 2.

Algorithm 2 Assigning a value to q

1: q ← 0
2: do

3: q ← q + 1

4: while ((U (0, 1) ≤ Cr) and (q ≤ n))

The trial vector x′i is generated as:

x ′i j ←

{

vi j for j = ⟨p⟩n, ⟨p + 1⟩n . . . ⟨p + q − 1⟩n
xi j for all other j ∈ {1, . . . ,n}

(8)

The angular brackets ⟨⟩n denote the modulo operator with mod-
ulus n. Elitism selection is applied between xi and x′i , where the
better one is kept for the next iteration.

Algorithm 3 Differential Evolution using Binomial Crossover

1: xi ← U (xmin
, xmax), i = 1, . . . ,M . ▷ Initialize

2: while termination criteria are not met do
3: for i = 1→ M do

4: Choose r1 , r2 , r3 , i ∈ [1..M] u.a.r.
5: vi ← xr1 + F (xr2 − xr3) ▷ Mutate
6: Choose jrand ∈ [1..n] u.a.r.
7: for j = 1→ n do

8: if U (0, 1) ≤ Cr or j = jrand then

9: x ′i j ← vi j

10: else

11: x ′i j ← xi j

12: end if

13: end for

14: if f (x′i) < f (xi) then

15: xi ← x′i ▷ Select
16: end if

17: end for

18: end while

4.1 Mutation

In addition to the so-called DE/rand/1 mutation operator (Eq. 6),
we also consider the following variants:

(1) DE/best/1 [19]: the base vector is chosen as the current best
solution in the population xbest:

vi ← xbest + F · (xr1 − xr2)

(2) DE/best/2 [19]: two differential vectors calculated using four
distinct solutions are scaled and combined with the current
best solution:

vi ← xbest + F · (xr1 − xr2) + F · (xr3 − xr4)

(3) DE/Target-to-best/1 [19]: the base vector is chosen as the
solution on which the mutation will be applied and the dif-
ference from the current best to this solution is used as one
of the differential vectors:

vi ← xi + F · (xbest − xi) + F · (xr1 − xr2)

(4) Target-to-pbest/1 [10]: the same as above except that we take
instead of the current best a solution x

p

best
that is randomly

chosen from the top 100p% solutions in the population with
p ∈ (0, 1].

vi ← xi + F · (x
p

best
− xi) + F · (xr1 − xr2)

(5) DE/2-Opt/1 [2]:

vi ←

{

vi ← xr1 + F (xr2 − xr3) if f (xr1) < f (xr2)

vi ← xr2 + F (xr1 − xr3) otherwise

1420

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico R. Boks et al.

4.2 Self-Adaptation of Control Parameters

The performance of the DE algorithm is highly dependent on values
of the parameters F andCr , for which the optimal values are in turn
dependent on the optimization problem at hand. The self-adaptive
DE variant JADE [10] has been proposed in desire to control the
parameters in a self-adaptive manner, without intervention of the
user. This self-adaptive parameter scheme is used in both DE and
hybrid algorithm instances.

5 HYBRIDIZING PSOWITH DE

Here, we propose a hybrid algorithm framework called PSODE,
that combines the mutation- and crossover operators from DE with
the velocity- and position updates from PSO. This implementation
allows combinations of all operators mentioned earlier, in a single
algorithm, creating the potential for a large number of possible
hybrid algorithms. We list the pseudo-code of PSODE in Alg. 4,
which works as follows.

(1) The initial population P0 = {x
(1)
, . . . , x(M)} (M stands for

the swarm size) is sampled uniformly at random in the search
space, and the corresponding velocity vectors are initialized
to zero (as suggested in [6]).

(2) After evaluating P0, we create P1 by applying the PSO posi-
tion update to each solution in P0.

(3) Similarly, P2 is created by applying the DE mutation to each
solution in P0.

(4) Then, a population P3 of sizeM is generated by recombining
information among the solutions in P0 and P2, based on the
DE crossover.

(5) Finally, a new population is generated by selecting good
solutions from P0, P1, and P3 (please see below).

Four different selection methods are considered in this work, two
of which are elitist, and two non-elitist. A problem arises during
the selection procedure: solutions from P3 have undergone the mu-
tation and crossover of DE that alters their positions but ignores
the velocity thereof, leading to an unmatched pair of positions and
velocities. In this case, the velocities that these particles have in-
herited from P0 may no longer be meaningful, potentially breaking
down the inner workings of PSO in the next iteration. To solve this
issue, we propose to re-compute the velocity vector according to the
displacement of a particle resulting from mutation and crossover
operators, namely:

v(i) ← x(i ,3) − x(i ,0), for i = 1, 2, . . . ,M, (9)

where x(i ,3) ∈ P3 is generated by x(i ,0) ∈ P0 using aforementioned
procedure.

A selection operator is required to select particles from P0, P1,
and P3 for the next generation. Note that P2 is not considered in the
selection procedure, as the solution vectors in this population were
recombined and stored in P3. We have implemented four different
selection methods: two of those methods only consider population
P1, resulting from variation operators of PSO, and population P3,
obtained from variation operators of DE. This type of selection
methods is essentially non-elitist allowing for deteriorations. Alter-
natively, the other two methods implement elitism by additionally
taking population P0 into account.

We use the following naming scheme for the selection methods:

[comparison method]/[#Pi considered]

Using this scheme, we can distinguish the four selection meth-
ods: pairwise/2, pairwise/3, union/2, and union/3. The łpairwisež
comparison method means that the i-th members (assuming the
solutions are indexed) of each considered population are compared
to each other, from which we choose the best one for the next
generation. The łunionž method selects the bestM solutions from
the union of the considered populations. Here, a ł2ž signals the
inclusion of two populations, P1 and P3, and a ł3ž indicates the
further inclusion of P0. For example, the pairwise/2 method selects
the best individual from each pair of x(i ,1) and x(i ,3), while the
union/3 method selects the bestM individuals from P0 ∪ P1 ∪ P3.

Algorithm 4 PSODE

1: Sample P0 = {x(1), . . . , x(M)} uniformly at random in
[xmin

, xmax]

2: Initialize velocities V ← {0, . . . , 0}.
3: while termination criteria are not met do
4: P1 ← ∅

5: for x ∈ P0 with its corresponding velocity v ∈ V do

6: v′ ← velocity-update(x, v)

7: x′ ← x + v′

8: Evaluate x′ on f

9: P1 ← P1 ∪ {x
′}

10: end for

11: P2 ← ∅

12: for x ∈ P0 do

13: x′ ← de-mutation(x)

14: P2 ← P2 ∪ {x
′}

15: end for

16: P3 ← ∅,V ← ∅

17: for i = 1→ M do

18: x′ ← de-crossover(x(i ,0), x(i ,2))

19: calculate v′ for x′ using Eq. 9
20: Evaluate x′ on f

21: P3 ← P3 ∪ {x
′}

22: V ← V ∪ {v′}

23: end for

24: P0 ← selection(P0, P1, P3)

25: end while

6 EXPERIMENT

A software framework has been implemented in C++ to generate
PSO, DE and PSODE instances from all aforementioned algorithmic
modules, e.g. topologies and mutation strategies. Such a frame-
work is tested on IOHprofiler, which contains the 24 functions from
BBOB/COCO [7] that are organized in five function groups: 1) Sep-
arable functions 2) Functions with low or moderate conditioning 3)
Unimodal functions with high conditioning 4) Multi-modal func-
tions with adequate global structure and 5) Multi-modal functions
with weak global structure.

1421

A Modular Hybridization of PSO and DE GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

In the experiments conducted, a PSODE instance is considered
as a combination of five modules: velocity update strategy, pop-
ulation topology, mutation method, crossover method, and selec-
tion method. Combining each option for each of these five mod-
ules, we obtain a total of 5 (topologies)× 4 (velocity strategies)×
5 (mutation methods) × 2 (crossover methods) × 4 (selection
methods) = 800 different PSODE instances.

By combining the 4 velocity update strategies and 5 topolo-
gies, we obtain 4 × 5 = 20 PSO instances, and similarly we ob-
tain 5 (mutation methods) × 2 (crossover methods) = 10 DE
instances.

Naming Convention of Algorithm Instances. As each PSO, DE,
and hybrid instance can be specified by the composing modules, it
is named using the abbreviations of its modules: hybrid instances
are named as follows:

H_[velocity strategy]_[topology]_[mutation]

[crossover][selection]

PSO instances are named as:

P_[velocity strategy]_[topology]

And DE instances are named as:

D_[mutation]_[crossover]

Options of all modules are listed in Table 1.

Experiment Setup. The following parameters are used throughout
the experiment:

• Function evaluation budget: 104n.
• Population (swarm) size: 5n is used for all algorithm in-
stances, due to the relatively consistent performance that
instances show across different function groups and dimen-
sionalities when using this value.
• Hyperparameters in PSO: In Eq. (2) and (3), ϕ1 = ϕ2 =

1.49618 is taken as recommended in [3] and for FIPS (Eq. (4)),
a setting ϕ = 4.1 is adopted from [14]. In the fixed inertia
strategy, ω is set to 0.7298 while in the decreasing inertia
strategy, ω is linearly decreased from 0.9 to 0.4. For the
Target-to-pbest/1 mutation scheme, a value of p = 0.1 is
chosen, following the findings of [10].
• Hyperparameters in DE: F andCr are managed by the JADE
self-adaptation scheme.
• Number of independent runs per function: 30. Note that only
one function instance (instance ł1ž) is used for each function.
• Performance measure: expected running time (ERT) [17],
which is the total number of function evaluations an al-
gorithm is expected to use to reach a given target function

value for the first time. ERT is defined as
#FEs(ftarget)

#succ , where
#FEs(ftarget) denotes the total number of function evalua-
tions taken to hit ftarget in all runs, while ftarget might not
be reached in every run, and #succ denotes the number of
successful runs.

To present the result, we rank the 830 algorithm instances with re-
gard to their ERT values. This is done by first ranking the instances
on the targets fopt + {101, . . . , 10−8} of every benchmark function,
and then taking the average rank across all targets per function.

Finally, the presented rank is obtained by taking the average rank
over all 24 test functions. This is done for both dimensionalities. A
dataset containing the running time for each independent run and
ERT’s for each algorithm instance, with the supporting scripts, are
available at [1].

[velocity strategy] [mutation]

B ś Bare-Bones PSO B1 ś DE/best/1
F ś Fully-informed PSO (FIPS) B2 ś DE/best/2
I ś Inertia weight T1 ś DE/target-to-best/1
D ś Decreasing inertia weight PB ś DE/target-to-pbest/1

[crossover] O1 ś 2-Opt/1
B ś Binomial crossover [selection]

E ś Exponential crossover U2 ś Union/2
[topology] U3 ś Union/3

L ś lbest (ring) P2 ś Pairwise/2
G ś дbest (fully connected) P3 ś Pairwise/3
N ś Von Neumann
I ś Increasing connectivity
M ś Dynamic multi-swarm

Table 1: Module options and codings of velocity strategy,

crossover, initialization, topology, and mutation.

7 RESULTS

Figure 1 depicts the Empirical Cumulative Distribution Functions
(ECDF) of the top-5 highest ranked algorithm instances in both
5-D and 20-D. Due to overlap, only 8 algorithms are shown. Tables
2 and 3 show the the Estimated Running Times of the 10 highest
ranked instances, and the 10 ranked in the middle in 5-D and 20-D,
respectively. ERT values are normalized using the corresponding
ERT values of the state-of-the-art Covariance Matrix Adaptation
Evolution Strategy (CMA-ES).

Though many more PSODE instances were tested, DE instances
generally showed the best performance in both 5-D and 20-D. All
PSO instances were outperformed by DE and many PSODE in-
stances. This is no complete surprise, as several studies (e.g. in
[9, 24]) demonstrated the relative superiority of DE over PSO.

Looking at the ranked algorithm instances, it is clear to see that
some modules are more successful than others. The (decreasing)
inertia weight velocity update strategies are dominant among the
top-performing algorithms, as well as pairwise/3 selection and bino-
mial crossover. Target-to-pbest/1 mutation is most successful in 5-D
while target-to-best/1 seems a better choice in 20-D. This is surpris-
ing, as one may expect the less greedy target-to-pbest/1 mutation to
be more beneficial in higher-dimensional search spaces, where it is
increasingly difficult to avoid getting stuck in local optima. The best
choice of selection method is convincingly pairwise/3. This seems
to be one of the most crucial modules for the PSODE algorithm,
as most instances with any other selection method show consid-
erably worse performance. This seemingly high importance of an
elitist strategy suggests that the algorithm’s convergence with non-
elitist selection is too slow, which could be due to the application of
two different search strategies. The instances H_I_*_PB_B_P3 and
H_I_*_T1_B_P3 appear to be the most competitive PSODE instances,
with the topology choice having little influence on the observed
performance. The most highly ranked DE instances are DE_T1_B

1422

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico R. Boks et al.

and D_PB_B, in both dimensionalities. Binomial crossover seems
superior to the exponential counterpart, especially in 20 dimen-
sions.

Interestingly, the PSODE and PSO algorithms łpreferž different
module options. As an example, the Fully Informed Particle Swarm
works well on PSO instances, but PSODE instances perform better
with the (decreasing) inertia weight. Bare-Bones PSO showed the
overall poorest performance of the four velocity update strategies.

Notable is the large performance difference between the worst
and best generated algorithm instances. Some combinations of
modules, as to be expected while arbitrarily combining operators,
show very poor performance, failing to solve even the most trivial
problems. This stresses the importance of proper module selection.

8 CONCLUSION AND FUTUREWORK

We implement an extensible and modular hybridization of PSO and
DE, called PSODE, in which a large number of variants from both
PSO and DE is incorporated as module options. Interestingly, a
vast number of unseen swarm algorithms can be easily instantiated
from this hybridization, paving the way for designing and selecting
appropriate swarm algorithms for specific optimization tasks. In
this work, we investigate, on 24 benchmark functions from BBOB,
20 PSO variants, 10 DE variants, and 800 PSODE instances resulting
from combining the variants of PSO and DE, where we identify
some promising hybrid algorithms that surpass PSO but fail to
outperform the best DE variants, on subsets of BBOB problems.
Moreover, we obtained insights into suitable combinations of algo-
rithmic modules. Specifically, the efficacy of the target-to-(p)best
mutation operators, the (decreasing) inertia weight velocity update
strategies, and binomial crossover was demonstrated. On the other
hand, some inefficient operators, such as Bare-Bones PSO, were
identified. The neighborhood topology appeared to have the least
effect on the observed performance of the hybrid algorithm.

The future work lies in extending the hybridization framework.
Firstly, we are planning to incorporate the state-of-the-art PSO
and DE variants as much as possible. Secondly, we shall explore
alternative ways of combining PSO and DE. Lastly, it is worthwhile
to consider the problem of selecting a suitable hybrid algorithm for
an unseen optimization problem, taking the approach of automated
algorithm selection.

ACKNOWLEDGMENTS

Hao Wang acknowledges the support from the Paris Île-de-France
Region.

REFERENCES
[1] Rick Boks, Hao Wang, and Thomas Bäck. 2020. Experimental Results for the

study "A Modular Hybridization of Particle Swarm Optimization and Differential
Evolution". (May 2020). https://doi.org/10.5281/zenodo.3814197

[2] Cheng-Wen Chiang, Wei-Ping Lee, and Jia-Sheng Heh. 2010. A 2-Opt based
differential evolution for global optimization. Applied Soft Computing 10, 4 (2010),
1200 ś 1207. https://doi.org/10.1016/j.asoc.2010.05.012 Optimisation Methods &
Applications in Decision-Making Processes.

[3] M. Clerc and J. Kennedy. 2002. The particle swarm - explosion, stability, and con-
vergence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation 6, 1 (Feb 2002), 58ś73. https://doi.org/10.1109/4235.985692

[4] Carola Doerr, Furong Ye, Naama Horesh, Hao Wang, Ofer M Shir, and Thomas
Bäck. 2019. Benchmarking discrete optimization heuristics with IOHprofiler.
Applied Soft Computing (2019), 106027.

[5] R. Eberhart and J. Kennedy. 1995. A New Optimizer Using Particle Swarm Theory.
Proceedings of the sixth international symposium on micro machine and human
science (1995), 39śś43.

[6] A. Engelbrecht. 2012. Particle swarm optimization: Velocity initialization. In 2012
IEEE Congress on Evolutionary Computation. 1ś8. https://doi.org/10.1109/CEC.
2012.6256112

[7] N. Hansen, A. Auger, O. Mersmann, T. Tušar, and D. Brockhoff. 2016. COCO: A
Platform for Comparing Continuous Optimizers in a Black-Box Setting. ArXiv
e-prints arXiv:1603.08785 (2016).

[8] Tim Hendtlass. 2001. A Combined Swarm Differential Evolution Algorithm
for Optimization Problems. In Proceedings of the 14th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems: Engineering of Intelligent Systems (IEA/AIE ’01). Springer-Verlag, Berlin,
Heidelberg, 11ś18.

[9] Mahmud Iwan, R. Akmeliawati, Tarig Faisal, and Hayder M.A.A. Al-Assadi.
2012. Performance Comparison of Differential Evolution and Particle Swarm
Optimization in Constrained Optimization. Procedia Engineering 41 (2012), 1323
ś 1328. https://doi.org/10.1016/j.proeng.2012.07.317 International Symposium on
Robotics and Intelligent Sensors 2012 (IRIS 2012).

[10] Jingqiao Zhang and A. C. Sanderson. 2007. JADE: Self-adaptive differential evo-
lution with fast and reliable convergence performance. In 2007 IEEE Congress on
Evolutionary Computation. 2251ś2258. https://doi.org/10.1109/CEC.2007.4424751

[11] J. Kennedy. 2003. Bare bones particle swarms. In Proceedings of the 2003 IEEE
Swarm Intelligence Symposium. SIS’03 (Cat. No.03EX706). 80ś87. https://doi.org/
10.1109/SIS.2003.1202251

[12] J. Kennedy and R. Mendes. 2002. Population structure and particle swarm perfor-
mance. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02
(Cat. No.02TH8600), Vol. 2. 1671ś1676 vol.2. https://doi.org/10.1109/CEC.2002.
1004493

[13] J. J. Liang and P. N. Suganthan. 2005. Dynamic multi-swarm particle swarm
optimizer. In Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005.
124ś129. https://doi.org/10.1109/SIS.2005.1501611

[14] R. Mendes, J. Kennedy, and J. Neves. 2004. The fully informed particle swarm:
simpler, maybe better. IEEE Transactions on Evolutionary Computation 8, 3 (June
2004), 204ś210. https://doi.org/10.1109/TEVC.2004.826074

[15] M. G. H. Omran, A. P. Engelbrecht, and A. Salman. 2007. Differential Evolution
Based Particle Swarm Optimization. In 2007 IEEE Swarm Intelligence Symposium.
112ś119. https://doi.org/10.1109/SIS.2007.368034

[16] M. Pant, R. Thangaraj, C. Grosan, and A. Abraham. 2008. Hybrid Differential
Evolution - Particle Swarm Optimization Algorithm for Solving Global Opti-
mization Problems. In 2008 Third International Conference on Digital Information
Management. 18ś24. https://doi.org/10.1109/ICDIM.2008.4746766

[17] K. V. Price. 1997. Differential evolution vs. the functions of the 2/sup nd/ ICEO.
In Proceedings of 1997 IEEE International Conference on Evolutionary Computation
(ICEC ’97). 153ś157. https://doi.org/10.1109/ICEC.1997.592287

[18] Y. Shi and R. Eberhart. 1998. A modified particle swarm optimizer. In 1998
IEEE International Conference on Evolutionary Computation Proceedings. IEEE
World Congress on Computational Intelligence (Cat. No.98TH8360). 69ś73. https:
//doi.org/10.1109/ICEC.1998.699146

[19] Rainer Storn and Kenneth Price. 1995. Differential Evolution: A Simple and
Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces.
Journal of Global Optimization 23 (01 1995).

[20] P. N. Suganthan. 1999. Particle swarm optimiser with neighbourhood operator.
In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.
99TH8406), Vol. 3. 1958ś1962 Vol. 3. https://doi.org/10.1109/CEC.1999.785514

[21] Chris Thornton, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013.
Auto-WEKA: Combined Selection and Hyperparameter Optimization of Clas-
sification Algorithms. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’13). Association for
Computing Machinery, New York, NY, USA, 847ś855. https://doi.org/10.1145/
2487575.2487629

[22] S. van Rijn, H.Wang, M. van Leeuwen, and T. Bäck. 2016. Evolving the structure of
Evolution Strategies. In 2016 IEEE Symposium Series on Computational Intelligence
(SSCI). 1ś8. https://doi.org/10.1109/SSCI.2016.7850138

[23] Sander van Rijn, Hao Wang, Bas van Stein, and Thomas Bäck. 2017. Algorithm
Configuration Data Mining for CMA Evolution Strategies. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO ’17). ACM, New York,
NY, USA, 737ś744. https://doi.org/10.1145/3071178.3071205

[24] J. Vesterstrom and R. Thomsen. 2004. A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on nu-
merical benchmark problems. In Proceedings of the 2004 Congress on Evolu-
tionary Computation (IEEE Cat. No.04TH8753), Vol. 2. 1980ś1987 Vol.2. https:
//doi.org/10.1109/CEC.2004.1331139

[25] Wen-Jun Zhang and Xiao-Feng Xie. 2003. DEPSO: hybrid particle swarm with
differential evolution operator. In SMC’03 Conference Proceedings. 2003 IEEE
International Conference on Systems, Man and Cybernetics. Conference Theme
- System Security and Assurance (Cat. No.03CH37483), Vol. 4. 3816ś3821 vol.4.
https://doi.org/10.1109/ICSMC.2003.1244483

1423

A Modular Hybridization of PSO and DE GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico

5D 20D

F
1

−
5

F
6

−
9

F
1

0
−

1
4

F
1

5
−

1
9

F
2

0
−

2
4

10
0

10
1

10
2

10
3

10
4
10

0
10

1
10

2
10

3
10

4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

runtime / dimension

p
ro

p
o
rt

io
n
 o

f
(f

u
n
c
ti
o
n
,
ta

rg
e
t)

 p
a
ir
s

DE

Hybrid

D_T1_B

D_PB_B

D_PB_E

D_T1_E

D_O1_B

H_I_I_T1_B_P3

H_I_M_T1_B_P3

H_I_L_T1_B_P3

Figure 1: Empirical Cumulative Distribution Functions (ECDFs) of the top-5 ranked algorithms in both 5D and 20D for each

function group defined in BBOB [7]. ECDFs are aggregated over 10 target values 10{1,0, ...,−8} and the ranking is in accordance

with Table 2 and 3. Note that only eight algorithms appear here since two algorithms are simultaneously among the top five

in both 5D and 20D.

1424

GECCO ’20 Companion, July 8–12, 2020, Cancún, Mexico R. Boks et al.

Algorithm Instance F1 F2 F6 F8 F11 F12 F17 F18 F21
rank CMA-ES 658.933 2138.400 1653.667 2834.714 2207.400 5456.867 9248.600 13745.867 74140.538

1 D_T1_B 2.472 1.175 2.261 3.177 1.640 2.362 1.907 9.397 0.592
2 D_PB_B 2.546 1.213 2.321 4.031 1.643 2.580 1.258 5.324 1.072
3 D_PB_E 3.176 1.483 3.635 5.152 1.700 2.750 1.584 4.350 0.305
4 D_T1_E 3.060 1.477 3.583 3.670 1.660 2.281 2.036 9.112 0.352
5 D_O1_B 3.152 1.466 3.717 4.155 6.360 8.818 1.445 8.405 0.383
6 H_I_I_PB_E_P3 3.911 1.830 3.817 3.724 2.951 3.055 3.301 3.021 0.519
7 H_I_I_PB_B_P3 3.685 1.694 3.117 3.115 2.912 3.047 2.102 3.222 1.063
8 H_I_G_PB_B_P3 3.138 1.473 2.813 5.656 2.968 3.099 4.684 3.507 2.251
9 H_I_I_T1_B_P3 3.599 1.700 3.155 5.106 2.837 2.670 2.914 3.975 0.727
10 H_I_N_PB_B_P3 3.480 1.650 3.100 5.061 2.852 2.932 2.453 3.213 1.064
. .
411 H_I_N_PB_B_P2 4.761 2.268 4.744 12.933 ∞ ∞ 3.113 53.561 2.738
412 H_D_N_T1_E_U3 29.656 38.499 22.459 25.214 5.091 9.053 22.333 8.645 1.247
413 H_B_L_B2_E_U3 25.515 13.345 91.998 10.758 4.203 5.516 16.277 ∞ 0.960
414 H_F_L_O1_E_U3 19.585 9.980 94.563 18.771 5.529 12.265 161.662 7.416 3.586
415 H_B_G_T1_E_P3 4.736 2.288 6.532 10.503 ∞ 45.093 2.808 36.108 3.474
416 H_B_N_B1_B_U2 6.531 3.029 8.313 6.918 93.749 13.117 28.817 ∞ 19.629
417 H_D_I_T1_E_P2 5.506 2.545 5.917 12.812 ∞ ∞ 7.791 34.691 3.433
418 H_D_M_O1_E_U3 21.270 10.963 33.571 12.992 5.882 7.250 12.577 5.760 1.192
419 H_B_G_O1_B_P2 4.091 1.764 4.959 ∞ ∞ ∞ 157.845 ∞ 2.253
420 H_F_L_T1_E_U3 26.450 15.383 17.706 12.174 4.609 9.334 16.892 53.541 1.822

Table 2: On 5D, the normalized Expected Running Time (ERT) values of the top-10 ranked and 10 algorithms ranked in the

middle among all 830 algorithms. The ranking is firstly determining on each test problem with respect to ERT and then

averaged over all 24 test problem. For the reported ERT values, the target fopt + 10
−7 is used. All ERT values are normalized

per problem with respect to a reference CMA-ES, shown in the first row of algorithms.

Algorithm Instance F1 F2 F6 F8 F11 F12 F17 F18 F21
rank CMA-ES 830.800 16498.533 4018.600 19140.467 12212.267 15316.733 5846.400 17472.333 801759

1 D_T1_B 7.377 0.864 5.912 3.702 2.678 4.699 3.144 3.604 0.385
2 D_PB_B 7.731 0.901 6.884 6.766 3.833 5.999 3.158 1.719 0.193
3 H_I_I_T1_B_P3 10.988 1.195 7.894 4.153 6.596 7.656 3.988 3.081 0.298
4 H_I_M_T1_B_P3 12.621 1.434 9.714 5.296 8.389 8.152 4.979 3.138 0.186
5 H_I_L_T1_B_P3 11.402 1.299 9.271 5.146 8.170 7.422 4.771 3.406 0.341
6 H_I_N_T1_B_P3 10.641 1.202 8.218 4.705 7.253 7.928 4.325 2.741 0.338
7 H_D_M_T1_B_P3 12.865 1.476 10.100 6.036 8.119 8.768 5.345 3.450 0.354
8 D_B2_B 7.983 0.885 ∞ 5.862 10.401 6.455 9.258 44.240 0.829
9 H_D_G_T1_B_P3 9.031 1.074 7.910 4.419 5.690 8.078 4.079 7.838 0.695
10 H_D_N_T1_B_P3 11.307 1.287 9.057 4.801 9.854 5.949 4.517 4.288 0.303
. .
411 H_D_L_T1_B_U2 39.225 6.262 ∞ 312.925 ∞ 35.178 ∞ ∞ 0.728
412 H_F_M_T1_B_U2 55.045 5.655 ∞ ∞ ∞ 34.213 ∞ ∞ 0.360
413 H_B_M_T1_E_P2 39.181 4.393 ∞ ∞ ∞ 41.771 ∞ ∞ 0.369
414 P_F_N 53.733 ∞ 1480.838 ∞ 88.421 ∞ ∞ ∞ 0.163
415 H_I_M_T1_B_U2 40.014 7.379 ∞ 313.468 ∞ 35.252 ∞ ∞ 0.546
416 H_I_N_PB_B_U3 70.776 362.611 86.426 ∞ 18.979 ∞ 339.045 113.442 0.433
417 H_I_M_B1_E_P2 33.073 3.734 ∞ ∞ ∞ 72.629 35.327 ∞ 0.876
418 H_I_G_B2_B_U2 43.424 8.498 ∞ 104.122 ∞ ∞ ∞ ∞ 7.367
419 H_B_G_PB_B_U2 41.308 16.007 ∞ ∞ ∞ 50.786 ∞ ∞ 1.054
420 H_B_N_PB_B_P3 33.984 4.203 ∞ ∞ ∞ 32.929 ∞ ∞ 1.314

Table 3: On 20D, the normalized Expected Running Time (ERT) values of the top-10 ranked and 10 algorithms ranked in

the middle among all 830 algorithms. The ranking is firstly determining on each test problem with respect to ERT and then

averaged over all 24 test problem. For the reported ERT values, the target fopt + 10
−1 is used. All ERT values are normalized

per problem with respect to a reference CMA-ES, shown in the first row of algorithms.

1425

	Abstract
	1 Introduction
	2 Related Work
	3 Particle Swarm Optimization
	3.1 Velocity Updating Strategies
	3.2 Population Topologies

	4 Differential Evolution
	4.1 Mutation
	4.2 Self-Adaptation of Control Parameters

	5 Hybridizing PSO with DE
	6 Experiment
	7 Results
	8 Conclusion and Future Work
	References

