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Abstract

The substantial advances that have been made to both the theoretical and practical aspects of particle

swarm optimization over the past 10 years have taken it far beyond its original intent as a biological

swarm simulation. This thesis details and explains these advances in the context of what has been

achieved to this point, as well as what has yet to be understood or solidified within the research com-

munity. Taking into account the state of the modern field, a standardized PSO algorithm is defined for

benchmarking and comparative purposes both within the work, and for the community as a whole.

This standard is refined and simplified over several iterations into a form that does away with poten-

tially undesirable properties of the standard algorithm while retaining equivalent or superior performance

on the common set of benchmarks. This refinement, referred to as a discrete recombinant swarm (PSO-

DRS) requires only a single user-defined parameter in the positional update equation, and uses minimal

additive stochasticity, rather than the multiplicative stochasticity inherent in the standard PSO. After a

mathematical analysis of the PSO-DRS algorithm, an adaptive framework is developed and rigorously

tested, demonstrating the effects of the tunable particle- and swarm-level parameters. This adaptability

shows practical benefit by broadening the range of problems which the PSO-DRS algorithm is well-

suited to optimize.
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Chapter 1

Introduction

Improvement is a constant goal in many endeavors. Betterment of the self, of ideas, of tools, of nearly

every feature of activity and existence drives both the natural biological process and most personal or

group endeavors. Technological advances, business processes, education, and evolution itself are all

based on the concept of improving knowledge and methods.

If improvement is the search for a “better” state in a given domain, optimization is the search for the

“best” state. Global optimization (GO) is an attractive subject of study due to its applicability within both

academic and professional spheres, and has over several decades been expanded to include a wide variety

of techniques that can often bear little resemblance to one another. New approaches are constantly being

conceived, introduced, and applied to find better or optimal solutions to problems both old and new.

This thesis will examine one such technique, Particle Swarm Optimization (PSO) from several

distinct angles. It will bring parts of the algorithm that are relics of the past up to date, expand this

modern definition of the algorithm to a simplified, improved form, and take steps toward the future of

the field with a proposal for a new framework of adaptation using this improved form.

1.1 Motivation
Particle Swarm Optimization, first introduced in 1995, is a subset of the broader global optimization

community[1, 2]. Its relative ease of implementation and excellent performance on optimizing difficult

nonlinear problems has led to quick adoption in the associated academic communities. This research

has taken the form of variations to the original algorithm of widely varying techniques and ability, but

apart from several notable exceptions, there has been little active research focused on taking that original

formulation and progressing it to an easily understood, more general form.

In spite of the mentioned ease of implementation, the PSO update equations are deceptively sim-

ple. Their straightforward form conceals complex second-order behaviour, with memory, multiple points

of attraction, and potentially explosive multiplicative stochasticity. Even the simplest formulation con-

tains at least two separate variables that must be balanced to produce stable behaviour and acceptable

performance. The subtle effect that these various features can have on particle behaviour have limited

analysis and restricted development to trial-and-error methods of testing variations to discover effective

adjustments.
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Simplified forms of PSO that remove unwanted and unnecessary behaviour while retaining the

appealing level of performance, and vitally, the ease of comprehension and implementation, help to

advance a better understanding of how the algorithm works, and why it behaves in its specific ways.

The more complex any algorithm becomes, the more difficult and time-consuming it becomes to learn

its use and application, limiting its appeal to new researchers and limiting new avenues of development.

By shaping PSO into something that is demonstrably effective and can be picked up quickly, understood

thoroughly, and expanded upon, the field can move forward to a focus on new concepts and practical

uses.

One of these concepts that has seen only limited research is development of an adaptive form of

the algorithm. Despite years of speculation that an adaptive particle swarm represents the future of the

algorithm[3, 4], efforts to this point have been extremely complex[5], directed specifically to narrow

problem types[6, 7, 8], or so extensively altered as to be unrecognizable as being derived from PSO[9].

Without a clear idea of how changing a parameter affects the behaviour of the swarm, all that can be

done is continual random adjustment until an effective setting or combination of settings is found.

To move beyond these works, a general framework needs to be defined that allows for clearly-

defined behaviour to be encoded into the swarm by means of adaptive rules to adjust these parameters.

These rules need to be easily swapped in and out to demonstrate the effects on performance on a given

problem. Being able to apply diverse adaptive rules to the same basic algorithm also leads to a better

understanding of its functioning by observation of the effects on behaviour. By creating a simple and

adaptive optimizer that is firmly tied to the principles of PSO, we can advance the algorithm in previously

neglected directions in a way that improves understanding and functionality throughout the field.

1.2 Contributions
In this thesis PSO will be examined in terms of its relationship with established algorithms, including

both swarm intelligence, and the larger field of evolutionary algorithms with which it is tentatively

associated. Substantial advances have been made to both the theoretical and practical aspects of PSO

since its inception, taking it far beyond its original intent as a simulator of biological swarms[10, 11, 12].

This progress will be detailed and explained in the context of what has been achieved to this point.

In spite of such progress, little has been done to establish a set standard version of the PSO algorithm

that could be adopted and used by the entire community. Many variations exist, each with advantages

and disadvantages that are often not obvious without in-depth research. Full understanding of the effects

of the parameters of each individual variant is necessary to know how adjustments will affect behaviour

of the particular algorithm, so the establishment of a fixed baseline for comparison is more feasible than

incorporating every known version of PSO into such a standard. The establishing work for this standard

is discussed and expanded upon, and used in later chapters in its intended role as a base of comparison

for new techniques.

While this definition of a standard form of PSO is necessary to firmly establish its place in the library

of GO algorithms, it should by no means be considered the final word on the subject. New techniques

and variations are under constant development in nearly all fields, practical and theoretical; optimization
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algorithms are no different. Such a development is undertaken here as a step toward the overall effort to

develop a simple, adaptive form of the PSO algorithm.

This new adjustment to the standard algorithm constitutes a substantial reduction to the complexity

of PSO, allowing for better understanding and an explanatory analysis of the behaviour of this class of

algorithm. Importantly, performance is not impaired by these simplifications, remaining at least equal in

nearly all cases and significantly improved in several areas. It is demonstrated that several components

of the standard PSO are inconsequential to its operation – their removal in the simplified techniques is

shown to have little effect on performance for the types of problems focused on in this work.

Finally, the future evolution of the PSO algorithm is discussed, and steps are taken down the path

of an adaptive form. While the standard form of PSO, as well as the new techniques derived here, are

shown to do well across a range of benchmark problems under clearly-defined general settings, each has

several parameters that can be tuned to adjust the behaviour of the swarm and its associated performance.

Creating a framework for adapting these parameters to the problem at hand permits relevance to a much

wider array of possible optimization problems by removing the need for a well-defined, specially con-

figured version of the algorithm to be set up for each problem. After a description of the methods and

means of adaptation as applied to the suitability of PSO, it is shown to be an encouraging step for future

development of the algorithm.

1.3 Objectives
The overall aim of this work is to present the concepts and implementations involved in simplifying the

established PSO algorithm, allowing for the introduction of an adaptive aspect that is broadly applicable

and unreliant on alterations to the core algorithm. These objectives can be detailed as the following:

1. to establish a standard form of the PSO algorithm that can be used in this work and others as a

guide and a baseline for future developments,

2. to simplify this algorithm to allow for easier analysis while obtaining equivalent or better perfor-

mance,

3. to perform a thorough mathematical analysis of the obtained simplified form in order to explain

their behaviour under normal circumstances, and

4. to develop an adaptive system that clearly defines points and methods of adaptation allowing for

broader application of the simplified algorithm.

1.4 Thesis Outline
Chapter 2 starts by providing a review of the field of optimization, including an explanation of the rele-

vant terms and concepts. The sub-discipline of evolutionary optimization is examined in more specific

detail, with the major techniques divided out and discussed in terms of their features and the methods

used in their processes. Although PSO is not, strictly speaking, an evolutionary algorithm, these vari-
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ous techniques are some of its closest neighbors, operating on the same types of problems in the same

iterative manner.

Particle Swarm Optimization is briefly explained within the context of swarm intelligence, along-

side other similar techniques. Its use in various forms over several different problem types is mentioned,

followed by a review of the major variations to the algorithm that have been developed. Finally, a short

summary of the applications of the algorithm to a variety of problem types is given.

Chapter 3 offers a thorough explanation of the PSO algorithm as originally proposed. The major

techniques and modifications introduced over the next 10 years of development are itemized and dis-

cussed before being combined into a single standard form of the algorithm. This newly-defined form is

rigorously tested and clearly explained, providing a solid, basic formulation of PSO for use both within

this work and for future external use. As this baseline definition comprises a collection of previously

proposed modifications to the original algorithm its status as an original contribution lies in the repre-

sentation of an effort to bring the community together around a single, well-defined standard form from

which all future research can be derived.

Chapter 4 builds on this standard algorithm by taking a reformulation and progressively altering and

removing components until a much-simplified update equation is attained. This new equation, and the

intermediate forms between it and the standard PSO are examined in terms of similarities and differences,

and performance trials are used to demonstrate the equivalent-to-superior functioning of the simplified

forms. This is used to argue that while the best representation of the technique remains the standard

algorithm for reasons of the current level of adoption, that formulation very likely includes non-integral

and possibly detrimental behaviours that can be removed without loss. The resulting form, which is less

complex and hence more easily analyzed, is the focus of the following research.

Chapter 5 presents a mathematical analysis of the simplified algorithm using techniques which

allow for description of both its behaviour and its convergence properties. These techniques are applied

to the general form of the algorithm, covering all of the intermediate steps between it and the standard

PSO described in chapter 3.

Chapter 6 develops a framework of adaptation that can be applied to the simplified PSO algorithm.

The real-time adaptations to the main parameters describing the swarm improve its competitiveness

on a broader problem benchmark over the original fixed-parameter version. More importantly, this

framework can be used to develop new rules and adaptations to the algorithm in order to both broaden

its applicability to new types of problems, and to improve its performance over current benchmarks.

Finally, chapter 7 concludes the thesis with a summary of findings. Potential future research that

can be undertaken from the concluding point of this work is discussed.

The appendices present full results tables for the various empirical trials of the previous chapters

and a list of publications that came about as part of the research detailed in the course of this degree.



Chapter 2

Literature Review

Despite the relatively recent inception of PSO when compared to established GO algorithms, it has been

a popular topic of research within the community. Much of this research has been focused upon practical

applications of the technique, resulting in a number of papers and articles demonstrating effectiveness

on a variety of problems. These contributions have done much to spread knowledge in the academic and

professional worlds, but little to advance understanding of the theory and mechanics behind the PSO

process.

Conversely, few publications have been put forward that detail the inner workings of the algorithm

and the causes behind its ability to optimize. Those contributions to PSO theory, though fewer in number,

have played a larger role in its growing acceptance within the global optimization community, and more

specifically that of heuristic evolutionary optimization.

This chapter provides a background for the development of particle swarms as optimizers through

a review of the characteristics of optimization. The general field of global optimization is briefly exam-

ined, followed by a closer look at heuristic and evolutionary optimization. These broader super-fields

contain the algorithms which are most often associated with PSO, most specifically evolutionary/genetic

algorithms and differential evolution. The origins of PSO are then assessed, followed by descriptions of

the most important of the numerous variations to the original algorithm.

2.1 Optimization
A complete definition of optimization is perhaps unattainable in anything but a complete review of the

subject, but for the purposes of this study it can be summarized as the process by which a given measure

of optimality is satisfied through an analytical search for an appropriate solution. Both the search and

the solution are often constrained by specific requirements of the measure, e.g. limiting the searching

area to some sort of feasible space, or prohibiting certain combinations of components. The discipline

is divided into several distinct fields; the most relevant distinction for the research presented here is the

division into linear and non-linear problems.

Linear optimization, widely referred to as linear programming is defined as the process of deter-

mining the maximum and/or minimum of a linear function, which has the common form in two variables

x and y:
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y = mx+ b (2.1)

where the constant m defines the gradient of the line and the constant b determines the offset of x

from y. This is a simplified example, but clearly demonstrates that linear equations are those through

which a first-order polynomial is equated to zero. Extremely capable algorithms have been developed for

solving complex linear equations, most notably the simplex method [13] and a later algorithm utilizing

the interior point method [14]. These techniques are common parlance in economics and engineering

where linear equations arise on a regular basis.

Non-linear optimization, which is the area that most evolutionary techniques, including PSO, fall

into, is concerned with determining the maximum and/or minimum of non-linear functions. These func-

tions are composed of second or higher-order polynomials that often express complex behaviour, as

well as functions that cannot be exactly expressed as finite-order polynomials. Non-linear equations are

generally more difficult to solve than linear equations, requiring special techniques that are not always

completely analytical.

2.1.1 Local Optimization

An optimization process is said to be local if only information from the immediate neighborhood in the

search space of a candidate solution is used in revising the solution. Formally, a feasible point x∗ is a

local minimizer of f if:

f(x∗) <= f(x),∀x ∈ B (2.2)

where B is a subset of the entire search space S. Given that a search space can contain multiple

unique subspaces, it follows that there can be multiple unique occurrences of these local minima in the

broader space.

Local optimization as a whole can be broken down into the fields of gradient-based optimizers and

direct search optimizers. Gradient search methods use gradient information from the first derivative

of an objective function to update candidate solutions in a direction approaching the local minimum

of the subspace. Examples of gradient-based methods include sequential quadratic programming [15],

augmented Lagrangian methods [16], and the steepest descent algorithm [17]. Direct search methods

do not use gradient information in their search procedure, relying entirely on objective function values

for optimizing behaviour. Algorithms utilizing this approach include Nelder-Mead simplex method [18]

(also known as the Amoeba algorithm), simulated annealing [19], and local versions of evolutionary

algorithms such as genetic algorithms [20].

2.1.2 Global Optimization

Global optimization differs from local optimization in its overall goal. Where local optimization is

concerned with finding the optimal solution in a subspace, global optimization is tasked with finding

the optimal solution for the entire search space. This is usually a much more difficult task than local

optimization due to the presence of multiple local optima within the search space. Figure 2.1 shows
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Figure 2.1: Local and global minima

local and global minima for a basic problem.

Determining which of these optima is in fact the global best solution is where gradient search

methods fail on these problems. In following the slope of a function, a gradient optimizer is unable to

“escape” from the basin of attraction of whichever minimum the initial candidate solution is placed in.

In any problem containing more than one local minimum, gradient search methods are unable to assume

or assure discovery of the global optimum.

Formally, a feasible point x∗ is a global minimizer of f :

f(x∗) <= f(x),∀x ∈ S (2.3)

where S is the search space. In terms of the unconstrained problems that are the main focus of this

work, S = Rn is common, where n is the dimension of x.

Global optimization techniques can be divided into four general categories based on their methods

and reliability. According to Neumaier’s definitive review of the field [21]:

• An incomplete method uses clever intuitive heuristics for searching but has no safeguards if the

search gets stuck in a local minimum.

• An asymptotically complete method reaches a global minimum with certainty or at least with prob-

ability one if allowed to run indefinitely long, but has no means to know when a global minimizer

has been found.

• A complete method reaches a global minimum with certainty, assuming exact computations and

indefinitely long run time, and knows after a finite time that an approximate global minimizer has
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been found (to within prescribed tolerances).

• A rigorous method reaches a global minimum with certainty and within given tolerances even

in the presence of rounding errors, except in near-degenerate cases, where the tolerances may be

exceeded.

Most evolutionary algorithms, including PSO, are classified as incomplete methods. While most

are able to escape local minima at least some of the time, they have no means of guaranteeing an optimal

global solution. They are, however, much faster than other methods, a result of only searching small

sections of the search space and directing updates to their candidate solutions based on heuristic rules.

2.1.3 No Free Lunch Theorem

The “no free lunch” (NFL) theorem, put forward in a series on both search and optimization, theorized

that for the set of all possible problem spaces, no individual algorithm could claim superior performance

over any other algorithm[22][23]. In other words, both a highly specialized algorithm and a general

purpose algorithm would show identical average performance when tested against all possible problems.

This was demonstrated to be true on finite problem spaces, though it has yet to be proven for infinite

spaces.

While on the surface these theorems appear to cast doubt on the effectiveness of developing new

algorithms, it is notable that they only hold for the entire set of all possible problems. It was quickly

claimed that NFL is not as restrictive as it first seems due to the fact that in practice, the operational space

of most optimization algorithms is subject to constraints that are not taken into account by the theorem

[24]. On subsets of these problems the theorems do not apply to the same extent. Because the area of

interest for most optimization algorithms is a decidedly finite subset of the entire set of all problems,

NFL does not erase hopes of improving on performance of standard algorithms.

This distinction led to a tightening of the definition of NFL to accommodate subsets of the space of

all possible problems [25]. While this broadened the applicability of the NFL rules to smaller subsets, it

is still the case that in many cases algorithms are specialized enough for a specific type of problem that

significant improvements in performance over competing processes can be clearly demonstrated across

the range of that subset.

2.2 Evolutionary Optimization
Evolutionary optimization is a process which can be applied both the local and global optimization

paradigms. It is an application of the evolutionary computation (EC) technique, which was developed

by several research teams simultaneously with slightly differing details, resulting in the fields of evolu-

tionary algorithms, evolutionary programming, and evolution strategies. All of these techniques were

developed with the same general goals in mind, and while originally each was considered a distinct

process, in more recent times they have grown together and have been enveloped under the umbrella of

evolutionary optimization.

Evolutionary computing (EC) is a field that has enjoyed a surge in growth and research in recent

times. Its concepts are rooted in biology and computer science, which are combined to produce a disci-
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pline that encompasses all methods for solving problems that are inspired by the traditional evolutionary

method seen in nature. These processes are designed and modeled after biological evolution to produce

the same developmental effects on a population over a period of time.

2.2.1 Evolutionary Algorithms

Evolutionary Algorithm (EA) is a very broad term that can potentially encompass all of the research

subjects within the following sections. It is most often used to refer to the techniques developed for opti-

mization and artificial intelligence, although it can also be used to describe any process which functions

using biologically-influenced Darwinian rules[26].

2.2.1.1 Genetic Algorithms

Genetic Algorithms (GAs) compose a subset of EAs where the representation of a possible solution is

encoded in a way inspired by a biological genome. They are a direct application of the concepts of

biological evolution to computer models, and were originally designed to closely replicate the features

observed in that process. The concept was originally proposed in 1957 by Alex Fraser[27], with several

following publications expanding on the topic[28, 29]. Wider recognition and popularity came with the

publication of the book Adaptation in Natural and Artificial Systems by John Holland[20].

A GA is designed to solve a specific problem, without any prior knowledge of an optimal solution.

It operates by creating an initial number, or population, of genomes, each genome representing a single

possible solution to the problem, usually randomly initialized. The encoding of the genome is an im-

portant factor, being the representation of the often abstract genome. This encoding can take a variety

of forms, from simple bit strings or sets of floating-point numbers to more complex structures such as

trees or key/value maps[30]. These genomes are then ranked according to their fitness - a measure of

how well each individual genome meets the requirements defined by the problem and set by the designer

for an optimal system. Those genomes with higher fitness ratings are considered to be superior, and are

more likely to be selected to “reproduce” with other genomes.

This breeding is most often implemented through crossover, a process by which individual genes

are selected from two “parent” genomes and placed into a newly created genome, considered to be the

“child” of both of the parents. This results in a new genome that usually possesses characteristics of

both of the parent genomes, without being an exact replica of either. Mutation can then be applied to the

child genome on a probability basis where only a small portion of the offspring of a population will be

mutated. How this is accomplished is totally dependent upon the form of the genome and the problem

being solved.

In the widely-known GA formulation popularized by Holland[20], the processes of crossover and

mutation are applied until there are an equal number of child genomes to parent genomes, at which point

the population of parents is destroyed and replaced by the offspring. This entire process is known as

a single generation. By selecting individual genomes with higher fitness values for reproduction, it is

frequently the case that the new population of offspring after a generation will have a higher average

fitness value than the population of parents. A GA can be set to run for as many generations as the

designer sees necessary for the development of an optimal or near-optimal solution to the problem at
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hand.

There has been a great deal of research and innovation in GAs since they were originally proposed

in 1975, including extremely thorough examinations of the details and behaviour of the algorithm [31].

With a better understanding of the mechanics of GAs, new selection, crossover, and mutation methods

have been introduced and refined, resulting in faster, more efficient and better performing techniques.

2.2.2 Evolutionary Programming

Evolutionary Programming (EP) was introduced as a method of simulating evolutionary processes with

the aim to create learning behaviour for artificial intelligence systems [32]. Its original use was in the

evolution of finite state machines for prediction.

In the originally defined form, EP is similar to genetic algorithms with the exception of a general

lack of recombination. The main operator of the algorithm is mutation, applied randomly, using uni-

form probability distributions. Given the lack of recombination, each parent is set to produce a single

offspring, mutated from the solution vector. Selection is then applied deterministically to eliminate the

bottom half of the combined existing and newly-generated populations, ranked by fitness/performance.

Like all heuristic optimization algorithms, EP faces the problem of premature convergence to a

suboptimal local minimizer, in this case caused by the tendency of strategy parameters used for adapting

mutation sizes to reduce diversity early in the optimization process. Several techniques have been pro-

posed to alleviate this problem, most notably the application of a dynamic lower bound to the parameter

values to prevent total loss of diversity [33].

Modern implementations of EP have broadened the area to include a number of variations, bringing

it more under the umbrella of EA representations. Real-valued variants of the algorithm have been

proposed which operate by applying Gaussian mutations to solution vectors [34]. Improved performance

was demonstrated through the replacement of the Gaussian mutation with a Cauchy-distributed mutation,

with the fatter tails of the Cauchy distribution allowing more large mutations leading to escape from local

minima [35]. This variation is known as Fast Evolutionary Programming (FEP).

2.2.3 Evolution Strategies

Evolution Strategies (ESs) are optimization techniques that when proposed were somewhat unique in the

field of evolutionary optimization due to the inclusion of a method of adapting the strategy parameters

during the problem optimization process[36][37]. It resembles GAs, and differs from EP, through its

inclusion of recombination, in this case as a secondary update operator. Like EP, however, mutation still

plays the primary role.

The two most common approaches to selection in ES are the (µ, λ) and (µ+λ) techniques, differing

in the treatment of the selection process. (µ, λ) generates λ offspring from a population of µ parents. A

population of size µ is then selected from the offspring to form the population for the next generation.

(µ+λ) also generates λ offspring from µ parents, but the new population is selected from the combined

parent and offspring population. This can be likened to a form of elitism in GAs, where the best of the

original parent generation is retained after selection.



2.3. Swarm Intelligence 23

2.2.3.1 Differential Evolution

Differential Evolution (DE) is a global optimization method similar to GAs, but usually classed as an

evolution strategy. It was proposed in the mid-1990s [38], around the same time as PSO, and has since

accumulated research interest of approximately the same scale. Like PSO, it is a fast, relatively simple

alternative to more complex evolutionary algorithms that shows very robust performance on nonlinear

optimization problems.

DE operates by generating new position vectors by adding the weighted difference vector between

two randomly-chosen population members to a third member, also chosen randomly. If the resulting

vector is evaluated with a more optimal objective value than another randomly-chosen population mem-

ber, the newly generated vector replaces that population member. If the objective value of the new vector

is equally or less optimal than that of the chosen population member the existing member is retained and

the new vector is discarded.

A comparison study of DE, PSO, and a few EAs demonstrated that DE showed superior perfor-

mance to the PSO and the EAs on a large suite of benchmarks [39]. It should be noted however that

the PSO algorithm used did not meet the stability criteria previously defined as necessary for stable per-

formance (see Section 2.5.1.2), and was only tested using a global communication topology which had

been previously demonstrated to be an inadequate choice for many optimization problems (see Section

2.5.2.1).

Limitations in the comparisons aside, DE has been shown to be an extremely capable optimizer,

certainly on a par with PSO and any other heuristic optimization algorithm.

2.3 Swarm Intelligence
Swarm intelligence (SI) can be described as a system where a group of decentralized, relatively sim-

ple components work together to achieve a more complex overall goal. An algorithm or framework

implementing the concept will normally adhere to five basic attributes defined in [40] and [41], namely:

1. Proximity - the swarm must be able to perform simple space and time computations,

2. Quality - the swarm should be able to respond to quality factors in the environment,

3. Diverse response - the swarm should not commit its activities along excessively narrow channels,

4. Stability - the swarm should not change its behaviour every time the environment changes, and

5. Adaptability - the swarm must be able to change its behaviour when the computational cost is not
prohibitive.

The chief characteristic of the swarm is its self-organization – there are no external controls in place,

and no rules that are applied to the conglomerated entity. The movement, behaviour, and optimizing

potential all arise from the interactions of the individual components.

These individual components are described in various ways, depending on the application, algo-

rithm, and the preferences of those who propose them. Although these components will usually have
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different characteristics depending on the particular system being used, they will always be designed to

interact with others of their type, giving rise to the emergence of the desired effect on the swarm level.

2.3.1 Stochastic Diffusion Search

Stochastic Diffusion Search (SDS) is a SI algorithm that uses a population of agents interacting directly

to search for optimal solutions to a given problem[42]. This search is carried out by means of a process

where individual agents each test a single candidate hypotheses to determine whether it partially fits

the definition of a “good” solution. Agents possessing such a hypothesis are then permitted to share

their findings with the rest of the population, while those left without such a hypothesis become passive

listeners. During the diffusion phase of the process, these listeners make direct communication with

other randomly-chosen agents, and if one of these is in possession of a good partial solution, this is

passed to the listener. Once a certain proportion of the swarm of agents is in possession of a single

hypothesis, the process is halted and this hypothesis becomes the solution for the problem. As some

hypotheses are more accurate than others, i.e. more of their partial evaluations will fit the good solution

definition, the best found hypothesis at any point will propagate throughout the entire swarm, replaced

by newer, more accurate hypotheses, until no better solution can be found.

SDS has been successfully used in a broad range of applications, including design of wireless

networks[43], image processing and facial recognition[44], and robotics[45]. Its independence from

solution encoding allows for use on almost any sort of separable space, eliminating the need for highly

specific formulations designed for distinct types of problems.

SDS has been rigorously mathematically analyzed[46, 47, 48], describing its means of convergence

to a global optimum and the behaviour associated with this process. In this respect it stands out from

many evolutionary algorithms, a number of which are widely used but not necessarily well-understood.

2.3.2 Ant Colony Optimization

Ant colony optimization (ACO) was originally developed as a SI-based method for finding a path through

a graph landscape that minimizes the distance traveled[49], a bottom-up approach to pathfinding algo-

rithms that avoided the rigidity of established techniques. It was designed to mimic the behaviour of

certain types of ants, which lay down pheromone trails between the nest and a food source. As ants

are more likely to follow a previously-laid pheromone trail, and as the pheromones evaporate over time,

shorter routes will be more frequently reinforced. This means that shorter, more optimal routes over time

will be followed by more ants, in turn leading to a heavier pheromone trail, and eventually resulting in

the entire ant population converging to a single route.

ACO uses simulated “ants”, which interact indirectly in the same way as those in the natural world

by laying down and strengthening links that direct the swarm toward improved solutions. This system

was quickly adopted in the optimization community and explored and expanded upon in great depth.
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While the original application of pathfinding provided an initial proof of the effectiveness of the con-

cept, later applications have ranged from data mining[50] to job scheduling[51] to protein folding[52],

amongst many others.

The exact functioning of the ACO algorithm is dependent on the particular variation and application

in use. All variations follow the same method of a biased stochastic search of the problem landscape,

using what are referred to in the literature as pheromone models to determine the biases. By changing

the pheromone model, a researcher can alter the behaviour of the colony/swarm to fit the needs of the

research topic being pursued.

2.4 Particle Swarm Optimization

Particle swarm optimization (PSO), first proposed by Eberhart and Kennedy in 1995 [1][2], is a relatively

new form of optimization algorithm that has become popular due in part to its speed and relative ease of

implementation. Originally conceived as a simulator of bird flocking behaviour, it is most appropriately

classed as a form of swarm intelligence[41], though given the similar objectives and concepts many

researchers study it (as well as many other swarm intelligence algorithms) in the context of evolutionary

algorithms despite its distinctly different origins.

Patterns of behaviour within swarms have been studied in a great deal of depth with many models

developed, some of them representing quite accurate simulations of biological systems such as flocking

and swarming [53][54]. The optimum-seeking behaviour of a flock seeking a food source was realized to

be a form of optimization of a problem space, with the flock members representing candidate solutions

and the food source representing the optimum of the search space. Biological groups of birds, bees,

and the like demonstrate complex internal interaction patterns which allow the optimum of the physical

search space to be found, a behaviour which can be translated to mathematical optimization of problems

in real-valued spaces.

2.5 The Basic PSO Algorithm

In the implementations of PSO described and cited in this review, all of which derive from the seminal

works of the field[1, 2], a particle moves through the search space using a combination of an attraction

to the best solution that that particle individually has found, and an attraction to the best solution that

any particle in its neighborhood has found. For these implementations, the neighborhood is defined for

each individual particle as the subset of particles which it is able to communicate with. The very first

PSO model used a Euclidian neighborhood for particle communication, measuring the actual distance

between particles to determine which were “close enough” to be in communication[1]. This was done in

imitation of the behaviour of bird flocks, taken from biological models where individual birds are only

able to communicate with other individuals in the immediate vicinity.
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While more biologically accurate (and nice to watch in graphical representations), the Euclidian

neighborhood communication model was quickly abandoned in favor of less computationally intensive

models when research focus was shifted from biological modeling to mathematical optimization[2].

Topological neighborhoods unrelated to the locality of the particle came into use, first what has come

to be known as a global, or gbest, neighborhood model, where each particle is connected to and able to

obtain information from every other particle in the swarm (see figure 2.2(a)), and the local lbest model,

where each particle is able to communicate with only a limited number of neighbors. While strict usage

of the term lbest topology allows for description of any swarm topology that is not global, it is often

used interchangeably with the term ring topology. A ring topology exists when each particle is able to

communicate only with its two neighbors when the swarm is arranged in an abstract “ring” layout (see

figure 2.2(b)). This study will refer to such a topology as a lbest ring or simply ring. See Section 2.5.2.1

for more on swarm topologies.

By the original definitions[1, 2], an individual particle i is composed of three vectors: its position in

the D-dimensional search space −→x i = (xi1, xi2, ..., xiD), the best position that it has individually found

−→p i = (pi1, pi2, ..., piD), and its velocity −→v i = (vi1, vi2, ..., viD). Particles were originally initialized in

a uniform random manner throughout the search space; velocity was also randomly initialized.

These particles then move throughout the search space using a set of update equations. The algo-

rithm updates the entire swarm at each time step by updating the velocity and position in every dimension

d of each particle i sequentially by the following rules:

vid = vid + cε1 (pid − xid) + cε2 (pgd − xid) (2.4)

xid = xid + vid (2.5)

where in the original equations c is a constant with the value of 2.0, ε1 and ε2 are independent

random numbers uniquely generated at every update for each individual dimension d = 1 to D, and −→p g

is the best position found by any neighbor of the particle.

The PSO algorithm
for each particle i in the swarm do

initialize position −→x i
initialize memory −→p i and −→p g

for each time step t do
for each particle i in the swarm do

update position −→x ti using eqs 2.4 & 2.5
calculate particle fitness f(−→x ti)
update particle and swarm memories −→p i and −→p g

Examination of the velocity update equation reveals the mechanics of particle motion. The first

term, v, is the velocity from the previous update process – this is similar to inertia in a physical setting,
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and was originally used to simulate natural motion when particle swarms were intended as biological

simulations. The second term, cε1 (pid − xid) is the attractive force toward the best found position of

the particle (personal best), while the third term, cε2 (pgd − xid) is the attractive force toward the best

found position of any of the neighbors of the particle (neighborhood best). While the constant c could be

detached into two separate values c1 and c2 which could be tuned independently to weight the personal

and social influence of two terms, the effect on particle velocity was not well understood at the time and

poor choices led to swarm instability.

Particle velocities in the original PSO algorithm had to be clamped at a maximum value vmax

where vd < |vmax| for every dimension d, effectively restricting its value to the range [-vmax, vmax].

Without this clamping in place the system was prone to entering a state of explosion, wherein the random

nature of the ε1 and ε2 values eventually led to successive combinations that caused particle velocities to

increase rapidly, approaching infinity and taking particles far outside the relevant search space.

2.5.1 Controlling Instability

The vmax solution introduced several undesirable elements to the PSO process. The value chosen for

vmax was highly dependent on the other properties of the system, especially the landscape being op-

timized, and there was no established guideline for determining an acceptable value short of trial and

error. Particle behaviour was altered as well; rather than allowing particles to converge naturally to an at-

tractor, their movements were abruptly halted when velocity reached vmax, in turn disrupting subsequent

velocity updates. The imposition of this artificial limit introduced an external factor into the algorithm,

and complicated investigation and analysis of the behaviour observed in the optimization process.

2.5.1.1 Inertia Weight

To circumvent these problems, a new parameter was introduced in an effort to strike a better balance

between global exploration and local exploitation while preventing the explosion in velocity seen in the

unclamped PSO[55]. This new inertia weight parameter w was designed to replace vmax by adjusting

the influence of the previous velocity on the optimization process. The parameter was added to the

original velocity update equation, resulting in:

vid = wvid + cε1 (pid − xid) + cε2 (pgd − xid) (2.6)

By adjusting the value of w up or down, the previous velocity term is weighted and the swarm has a

respectively lesser or greater tendency to eventually constrict down to the area containing the best fitness

and explore that area in detail. It was later demonstrated that w can be defined as a dynamic value over

the optimization process, starting with a value greater than 1.0 to encourage early exploration of the

search space, and decreasing eventually to a value less than 1.0 to focus the efforts of the swarm on a
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specific locale containing the global optimum [56]. This control of the “inertia” of particles, similar to

the role of friction or viscosity in a physical setting, removed the need for velocity limiting and showed

improved performance over the original algorithm.

Several other studies have looked into the inertia weight parameter and explored strategies for its

use. In one case a random value was applied to the previous velocity term rather than using either a

fixed or dynamically decreasing value as originally proposed, with competitive results[57]. Elsewhere,

an increasing value for w was applied, allowing the swarm to quickly find an optimum and then search

around that area for improved regions[58].

2.5.1.2 Constriction Coefficients

Another method of solving the problem of explosion, referred to as constriction, was being explored

simultaneously with the inertia weight method. Like inertia weight, it involved the addition of a single

parameter to the velocity update equation and removed the need for velocity clamping. This method was

introduced and disseminated throughout the research community informally for several years and was

used (often uncited) in multiple publications[59] prior to publication. It was formally published in 2002,

accompanied by a complete analysis of particle trajectories and swarm stability[10].

Several methods were proposed therein for introducing this means of swarm constriction and con-

vergence. The simplest of these, which was used as a concluding aspect of the work, was referred to

in the study as PSO Type 1′′, and introduced a new parameter χ to the velocity update equation. χ, the

constriction factor, was derived analytically from the existing constants where:

χ =
2∣∣∣2− ϕ−√ϕ2 − 4ϕ

∣∣∣ (2.7)

where ϕ = c1 + c2[10].

It had been previously observed that if ϕ was defined within the range [0...4], trajectories of de-

terministic particles with no random components demonstrated regular behaviour[3]. The analysis of

particle trajectories included in the introduction of constriction showed that when 0 < ϕ < 4, the swarm

would slowly “spiral” toward and around the best found solution in the search space with no guarantee

of convergence, while for ϕ > 4 convergence would be quick and guaranteed. While it is possible to

weight the velocity update equation to favor the best position of the individual particle pi or the best

position of the entire swarm pg by adjusting the values of c1 and c2, for the sake of simplicity most im-

plementations of constricted particle swarms use equal values for both parameters. Using equation 2.7

with the constant ϕ = 4.1 to ensure convergence, the values χ ≈ 0.72984 and c1 = c2 = 2.05 are

obtained. This constriction factor is applied to the entire velocity update equation:

vid = χ (vid + c1ε1 (pid − xid) + c2ε2 (pgd − xid)) (2.8)
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Given that constriction and inertia weight are algebraically equivalent via the mappings w ↔ χ and

c1,2 ↔ χc1,2, the effects are identical. Swarms show convergent behaviour and are eventually limited

to a small area of the feasible search space containing the best discovered solution. A comparative

study of the two methods demonstrated that the PSO algorithm with constriction is in fact a special

case of the algorithm with inertia weight in which the values for the parameters have been determined

analytically[60]; algebraically the standard constriction terms of χ ≈ 0.72984 and c1 = c2 = 2.05

equate to an inertia weight system with w ≈ 0.72984 and c1 = c2 = 1.49618. The parameter values

noted above were preferred in most cases when using constriction for modern PSOs due to the proof of

stability for those values. This proof of stability makes the constricted form of PSO possibly the more

popular “standard” choice for the algorithm in subsequent publications, though inertia weight is still

widely used with the equivalent parameters.

2.5.2 Communication Topologies

2.5.2.1 Static Topologies

In its original formulation as a simulation of biological swarms, communication within particle swarms

was organized by way of Euclidian neighborhoods, i.e. each particle communicated only with its current

nearest spatial neighbor(s) at any given point of the optimization process[1]. This was found even in that

initial study to be extremely computationally expensive, especially in high dimensional spaces, and more

abstract topologies were adopted in it and the following expansion where each particle was permanently

connected to and able to communicate with other predetermined neighbors[1, 2].

The first of these was the gbest, or global topology (figure 2.2(a)). As the name suggests, this

model allows communication to take place between all particles. This has the net effect of allowing every

particle in the swarm to immediately access the best position found by the swarm as a whole for use as the

neighborhood best term in its velocity update equation. While this is implausible for a biological swarm,

it is far simpler for optimization purposes. The attraction toward the best found position in the entire

swarm results in every particle being attracted toward that point, allowing for thorough exploitation of the

associated optimum. This is beneficial in cases where that point is very likely to be the global optimum,

such as unimodal problems – those containing a single, global optimum. Such behaviour is not always

desirable however, especially in cases where many local optima exist that the swarm could be quickly

drawn into.

The other topology used in the original proposal of PSO[1] was the lbest, or local topology (fig-

ure 2.2(b)). While global topologies are equivalent to fully-connected graphs with K = n×(n−1)
2 edges

where n is the number of vertices, local topologies are just one edge over being minimally connected,

with n edges. This ring design allows information to be spread throughout the swarm, but it is done

slowly as each particle is influenced only by two others. This is equivalent to a graph with K = 2 con-
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(a) The gbest topology (b) The lbest ring topology

(c) The von Neumann topology

Figure 2.2: Particle swarm topologies

nectivity. The advantage of the ring topology over global lies in its slower convergence rate. Rather than

having every particle drawn simultaneously toward a single point of the search space, multiple points

can be explored by subpopulations before the swarm is eventually drawn to the area with optimal fitness.

Figure 2.3 shows a swarm consisting of twelve particles optimizing a multimodal problem, where each

particle is attracted to one of three separate peaks, indicated by shading. This indicates that the swarm

has split into multiple sub-swarms, simultaneously exploiting several areas of the problem landscape.

Such behaviour results in a swarm that is less likely to become trapped within local optima on multi-

modal problems, making it a better global optimizer. At the same time, swarms with local topologies

will usually optimize a peak considerably slower than those operating with global communication due

to the slower information dissemination[1, 2, 61].

Based on the major differences in swarm behaviour between these two original topologies, further

research was performed to look into the influences of the social dynamics of a swarm. Initial investi-

gations into many different types of communication topologies showed that while performance varied
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Figure 2.3: A ring-topology swarm split into sub-swarms across multiple peaks. Shading indicates which
of three peaks the specific particle is currently attracted to via the cognitive term pid.

greatly based on whichever was used, this was highly dependent upon the problem being optimized[61].

In an effect similar to that of the No Free Lunch theorem[22][23] (see section 2.1.3), no single topology

could be demonstrated as optimal across all potential problems[61].

A general study of swarm communication topologies tested a great many models, most of which

were randomly generated, with the intent of studying how the various properties of topologies influ-

enced swarm behaviour using standard constricted update equations[62]. The properties were derived

from work on the small worlds theories[63, 64, 65] and included two elements. The first was graph K-

connectivity, or how many edges/connections emanated from each vertex/particle in the communication

topology. The second was clustering, the average number of neighbors to a vertex/particle which were

also neighbors to one another, over an entire swarm. The effect of self-inclusion of a particle into its

own neighborhood was also examined, and was determined to be relatively unimportant next to overall

topology design[62].

This examination, combined with a later, more in-depth study[12], revealed that swarm topology

influences behaviour and performance to a great degree, often making the difference between success

and failure on the tested optimization problems. Surprisingly, both lbest and gbest swarms showed

poor performance when compared to swarms with moderate values for K-connectivity[12]. Overall,

topologies with K = 5 performed best after 20,000 function evaluations, while those with K = 10 were

those which were fastest to reach the optimum in trials where it was found[12]. Study of the clustering

property showed that it had less effect than the connectivity of the topology, though a topology with
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clearly defined clusters of particles was one of the better performers[12].

A major development to come from this work was what was referred to as the toroidal “vonNeu-

mann” topology, one of those with K = 4 (see figure 2.2(c))[12]. This is a very straightforward non-

random topology which showed excellent performance on the five tested problem landscapes. It consti-

tutes a tradeoff between the respective low and high connectivity of lbest and gbest swarms, and a similar

tradeoff between the slower exploratory searching and faster exploitative searching of the two extremes.

2.5.2.2 Dynamic and Adaptive Topologies

Given the demonstrated differences in behaviour among the various types of swarm communication

topologies, a dynamic and/or adaptive topology would seem to be a viable option. As was shown with

the von Neumann topology, a tradeoff between exploration and exploitation is beneficial to performance.

This promotes the idea that sparsely-connected swarms may be most useful early in the optimization

process for locating the area of the global optimum of a problem, while more densely-connected swarms

would allow fast, accurate discovery of the single best point within that basin of attraction. Rather than

using a fixed topology throughout, a topology could be adapted to take advantage of the current state of

the system for optimal performance.

Basic research into this was performed where swarm connectivity was increased throughout the

optimization process, though results were not entirely conclusive[66]. This method is dynamic, but

lacks an adaptive nature – the topology is altered based entirely on a predetermined function of time, or

more accurately the number of performed function evaluations. More in-depth study was carried out in

an informal capacity and to date remains unreviewed and unpublished[67]. A study of the C-language

code for this system shows that it uses an adaptive topology that is generated so that each particle is

informed by three other particles, randomly chosen, i.e. K = 3. The best found fitness value for the

entire swarm is checked after every iteration, and if it has failed to improve since the last check, the

entire topology is destroyed and recreated from scratch using the same rules. Reported results have been

promising, but to date remain unpublished.

2.6 Statistical Analyses of PSO

Until recently, mathematical analyses of particle swarm optimization have been rather limited in specific

ways. This is for the most part due to the multiplicative stochasticity of the update equations, and the

difficulty in quantifying the relationships and influences in swarms with numerous particles. In spite

of these hurdles, there have been several illuminating studies into the theoretical aspects of swarms and

particles that have revealed how a PSO algorithm actually functions.

While inroads were made into the study of the nature of swarm optimization fairly soon after its

proposal by Ozcan and Mohan[68], this examination confined itself to a single particle operating deter-
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ministically in a single dimension during stagnation with a single point of influence – the personal best

and global best were set to be equivalent, i.e. pi == pg . Further, these early results only supported the

original form of the algorithm, which had already been superseded in performance and adoption by the

inertia weight formulation[55]. Despite these limitations, this first formalization of particle behaviour

helped to define some of the concepts behind the algorithm, including particle trajectories. This study

was later expanded and generalized to take into account multiple particles in a multi-dimensional search

space[69].

Intense study into particle trajectories was occurring simultaneously with the previous work and be-

ing presented widely throughout the community by Clerc and Kennedy. Despite its delayed publication,

this study was influential to Ozcan and Mohan’s research as well as others in its approach to a statistical

analysis of PSO[10]. This model included a proof of convergence for the algorithm given appropriate

parameter settings alongside the new update formulation with constriction. It used assumptions similar

to those of Ozcan with a single particle operating deterministically under stagnation.

Blackwell pursued a better understanding of the behaviour of the swarm as a whole via an inves-

tigation into the variation of its spatial properties over time[70, 71]. This study extended that of Clerc

and Kennedy by modeling an entire swarm of constricted particles including interaction and inter-swarm

influences. As in the Clerc/Kennedy work, stochasticity was not taken into account, however stagnation

was not assumed by way of changeable personal best positions.

In his doctoral thesis, van den Bergh investigated a non-stochastic, stagnated analysis of particle tra-

jectories, and demonstrated that the particle under stagnation is constantly attracted to a fixed point[72].

This fixed point was based entirely on the circumstances of the particle, and was not necessarily optimal

in the search space, even for the immediately surrounding area.

Trelea analyzed the parameter space of a particle operating under the same common assumptions

made in the previous Clerc/Kennedy study[73]. This demonstrated the influence of various parameter

settings on the behaviour of particles and the resulting capability of the swarm to carry out an effective

optimization.

Clerc returned to the analysis of PSO in an unpublished technical report on particle velocity under

stagnation[74]. Unlike all previous work to this point, this study took stochasticity into account, which

provided a model approach for later investigations.

Now taking stochasticity into account as per Clerc, Kadirkamanathan pursued an explanation of

the stability of the single best particle in the swarm, i.e. the particle for which pi == pg[75]. Using a

Lyapunov analysis, this work used an interdisciplinary approach to dynamical systems known as control

theory to demonstrate that under appropriate selections for parameter settings, PSO can be guaranteed to

converge, albeit not necessarily to an optimal point.

In 2007 Poli et al published an early investigation into using a generalized method to analyze a sim-
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plified form of the standard PSO algorithm[76]. The simplified algorithm was not particularly effective

in comparison to the full algorithm, but the methods used to derive its stability and sampling distribution

were the first published appearance of a method of analysis that itself made no simplifying assumptions

apart from stagnation.

Finally, later in 2007 Poli introduced a refined, generalized method of determining all of the char-

acteristics of a swarm algorithm’s sampling distribution while under stagnation[77, 78], and applied

it to the full standard PSO algorithm. The only assumption made with this method is that of particle

stagnation, meaning that it is able to be used for analysis of many types of stochastic update equations.

2.7 PSO Variants

2.7.1 Fully Informed Particle Swarms

The Fully Informed Particle Swarm (FIPS) constitutes a fairly major variation to the social interaction

of particles from the system of more standard swarms [62, 81]. Rather than the traditional approach

whereby a particle’s position update was influenced by just two other positions in the search space, its

personal best position and the best position found by any particle in its neighborhood, under FIPS the

update takes into account the best found positions of every neighbor of the particle.

The new positional update equation for FIPS was in the form:

ϕk = U

(
0,
ϕmax
|N |

)
,∀k ∈ N

Pm =
∑
k∈N W (k)ϕk × Pk∑

k∈N W (k)ϕk
(2.9)

where ϕ replaces the random numbers ε1,2 from the original PSO equations, N is the set of neigh-

bors for the particle being updated and Pk is the best position found by the individual particle k. W is a

function describing a relevant property of the particle, which was explored in the original investigation

using a number of variations such as best fitness or distance between particles. This general form was

later refined to a traditional combination of the velocity and positional updates:

vt+1 = χ

(
vt +

N∑
n=1

cε(pnbr(n)t − xt)
N

)
(2.10)

xt+1 = xt + vt+1

where χ is a constricting factor, N is the number of particles in the neighborhood of the currently

updating particle, and nbr(n) is the particle’s nth neighbor[87].

FIPS was demonstrated to return significantly better performance than the original PSO system

when properly tuned[62, 81]. It was also noted that the swarm communication topology played a large
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Variant Type Description Reference

Bare-bones Gaussian Static Replaces update equations with a
Gaussian probability distribution

[79]

Bare-bones Lévy Static Replaces update equations with a Lévy
probability distribution

[80]

FIPS Static Replaces update equations with a method
which informs particles using a

combination of the best positions of all
neighbors

[81]

Simpler PSO Static Removes multiplicative stochasticity from
update equations

[76]

PSODR Static Replaces personal or neighborhood best
position in update equations with a

recombinant position informed by all
neighbors

[82]

MOPSO Multiobjective Guides particles to unexplored space to
find non-dominated solutions

[83]

DIW PSO Dynamic Randomizes inertia weight to prevent full
convergence to a single moving peak

[57]

Charged Swarms Dynamic Introduces repulsive force between
particles to prevent full convergence to a

single moving peak

[84]

Multi-swarms Dynamic
Multiobjective

Uses multiple independent, interacting
swarms using repulsion, exclusion, and

anti-convergence methods to track
multiple moving peaks

[85]

Tribes Adaptive Replaces update equations with a pivot
method, uses social interaction of particles

to dynamically regenerate topology

[11]

EPSO Adaptive Randomly perturbs algorithm parameters
according to adaptive rules informed by

selection-based process

[86]

APSO Adaptive Uses a fuzzy classification system for
estimating the state of the swarm to

inform adaptations

[5]

Table 2.1: Notable variants of the PSO algorithm
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role in this new method, a theme that would become common in many variants of PSO.

2.7.2 Bare-Bones PSO

In an effort to better understand the mechanics underlying particle behaviour during the optimization

process, PSO was reduced to a simpler form[79]. Examination of the distribution of positions around a

fixed point in the search space over multiple iterations revealed a similarity to a Gaussian distribution.

This reduced “bare-bones” particle swarm took advantage of this similarity by replacing the method of

updating the positions of particles (previously done via equations 2.4 and 2.5) with a normal probability

distribution with mean in each dimension of p+g2 and a standard deviation of |p− g|.

As velocity is no longer required for the update, the entire update equation for this form of PSO is

wholly positional:

xt = G(
pt + gt

2
, |pt − gt|) (2.11)

where G(mean,std) is a sample from a Gaussian distribution.

This original Gaussian-based bare-bones PSO performed comparably to the more standard algo-

rithm over five standard test functions, suggesting that the velocity vector could be unnecessary, an

“arbitrary piece of baggage from the initial forms of PSO.” Removing the velocity vector from the al-

gorithm reduces the effect of particle trajectories and refocuses attention on the connections between

particles and their influence on swarm behaviour.

“The essence of the paradigm is not to be found in its flying trajectories, but in the influence

that individuals have on one another, in the persistence of individual identities over time,

in the stability of sociometric interaction patterns. The trajectories are well-described by

the bell-curve of test points centered between the individual’s previous best point and some

other point derived from social experience.”[79]

However, further investigation of this system revealed that while bare-bones PSO possessed many

similarities to the standard algorithm, performance was degraded in some instances and behaviour was

not identical[88]. Close examination of the supposed Gaussian-like distribution of particle positions

revealed a much higher kurtosis than for a Gaussian, i.e. there were more extreme deviation from the

mean influencing the variance of the velocity-based system than in a Gaussian distribution, where the

variance is influenced by a larger number of moderate deviations. These extreme deviations were referred

to as “bursts of outliers”, and were conjectured to account for the slightly improved performance of the

velocity-based PSO due to what was believed to be a higher swarm diversity[88].

This implication led to the development of a bare-bones system using a Lévy distribution[80]. The

Lévy distribution is based on the concept of Lévy flights, a type of random movement in which the
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increments are distributed with infinite variance [89]. This gives a distribution with outlying deviations

similar to those observed in a PSO system, the frequency of which can be adjusted according to a

parameter α. For values of α = 1.4 it was demonstrated that the performance and behaviour of this

“Lévy Swarm” was extremely close, if not identical, to that of a standard velocity-based PSO[80].

2.7.3 Adaptive PSOs

An adaptive PSO has been defined as a system with no user-defined parameters that adjusts its behaviour

to an optimal form related to its current situation without the need for external input[90]. As of yet, few

attempts have been made to develop an adaptive particle swarm algorithm despite the obvious appeal of

being able to disregard the tedium and guesswork of parameter tuning and hybridization of the method

for better performance on specific problems.

While this form of adaptation has been shown to be very effective on dynamic landscapes, few such

methods exist for the more common static landscapes. A concept from evolution strategies was applied

to PSO where the parameters were randomly perturbed by small amounts dependent on a selection-based

process that was used to adapt the perturbations[86].

There have been a few efforts at introducing adaptive features into PSO using the standard constric-

tion coefficient or inertia weight formulations[91][6][92]. Perhaps the most notable of these is Tribes,

an optimization system influenced by the social interaction of particles within the algorithm, but with

distinctive particle behaviour and complex adaptive rules which are used to develop a swarm intended to

be well-suited to the landscape under optimization[11]. Tribes has demonstrated very good performance

on a variety of benchmarks, though its major deviations from the norms of a canonical PSO system,

e.g. foregoing the weighted neighborhood influence for a pivot method of positional updates, make its

classification within the same field somewhat questionable.

More recently there have been efforts at creating an algorithm using the original particle swarm

optimizer where the swarm bases the adaptation of three different update equation parameters on the

state of a feedback variable[5]. This showed promising results, with the calculation of this “evolutionary

factor” being used to determine the state of the optimization, which is then passed through one of four

different strategies of adaptation, finally applying a sigmoid mapping to the previous velocity term to

control its influence. While results were shown to be improved over several other forms of PSO[5], the

level of complexity in the implementation limits the possibility for extension by any but the original

authors.

The most obviously adaptable components of a PSO system are the number of particles in the

swarm, the K-connectivity of the topology, and the various parameters in the velocity update equation.

It has been shown that adaptation of these parameters can lead to impressive gains in performance[90],

and it has been theorized that a fully adaptive particle swarm is the future of the field[4].
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2.7.4 PSO on Other Problem Types

2.7.4.1 Constrained Optimization

While most research into PSO has focused on unconstrained optimization, which has few to no require-

ments on the values of the parameters, a few examinations of its capability on constrained nonlinear

optimization problems (CNOP) have been published. CNOPs have been very well-researched topics of

research in the general optimization community, with significant amounts of research devoted to algo-

rithms designed for the purpose of solving them, including several evolutionary algorithms [93].

General CNOPs are defined as [94] the effort to optimize a nonlinear objective function subject to

a set of equality and inequality constraints. Formally, the goal is to find the solution vector

x∗, x∗ = (x1, x2, ..., xn) ∈ Rn (2.12)

where for the objective function f(x) ∈ F ⊆ S where F defines the feasible region of the problem. For

unconstrained optimization, F is most often defined simply as the region between the lower and upper

bounds in each dimension, where

l(i) ≥ x(i) ≤ u(i), i = 1, ..., n. (2.13)

Constrained optimization adds additional limits to the feasible region, specifically inequality and

equality conditions:

gi(x) ≤ 0, i = 1, ..., p (2.14)

hj(x) = 0, j = q + 1, ...,m. (2.15)

The basic PSO algorithm was applied to a number of standard CNOP benchmarks and consistently

solved the majority of the problems therein[95]. Drawbacks were mostly confined to those that are

present for most stochastic algorithms on CNOPs, namely that the equation constraints can be difficult

to deal with due to the random nature of the update values, and the difficulty of generating an initial

population contained within the feasible portion of the search space. PSO was shown to be substantially

faster than the compared more established algorithms. A local topology was shown to return more

accurate results[95].

Another study incorporated a penalty function into the particle fitness evaluation, allowing for a

softer approach to the constraints and improved performance[96]. Penalty functions have been defined

as

f ′(x) = f(x) + h(k)H(x), x ∈ S (2.16)
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where k is the current iteration of the algorithm, h(k) is a dynamic penalty function, and H(x) is a

penalty factor [97]. Without special parameter tuning, PSO produced results that were competitive with

or superior to those reported for several other algorithms[96].

2.7.4.2 Multiobjective Optimization

Multiobjective optimization (MO) is a subfield of optimization wherein

“...a vector of decision variables which satisfies constraints and optimizes a vector function

whose elements represent the objective functions. These functions form a mathematical

description of performance criteria which are usually in conflict with each other. Hence, the

term optimize means finding such a solution which would give the values of all the objective

functions acceptable to the decision maker.[98]”

Formally, multiobjective optimization is a process by which optimal solutions for a vector of mul-

tiple objective functions is determined. For an n-dimensional search space S where fi(x), i = 1, ..., k, k

being the number of objective functions defined over S,

~F (x) = [f1(x), f2(x), ..., fk(x)] (2.17)

is the vector of objective functions and

x∗ = (x∗1, x
∗
1, ..., x

∗
1), x∗ ∈ S (2.18)

is the optimal solution that satisfies all necessary constraints and optimizes the objective function

vector. Because it is not likely that all of the objective functions being optimized will contain the same

global optimum at the same point in the search space, trade-offs must be made between the functions.

The solution to a MO problem is a set of Pareto optimal solutions which are each unique, and which

each solve the set of objective functions to the same degree of optimality. This set is called the Pareto

optimal set and consists of vectors which are non-dominated, i.e. there exist no better solutions for the

problem. The Pareto front is the plot of the objective functions for which the non-dominated vectors are

in the Pareto optimal set.

While EAs have been applied to MO for some time, e.g. [99], PSO was first used for optimiz-

ing a benchmark of common problems more recently. Testing was done using a technique known as

the weighted aggregation approach by the values of all objective functions at a candidate solution are

summed to a weighted result F =
∑k
i=1 wifi(x), wi ≥ 0 and

∑k
i=1 wi = 1 where the weights wi can

be either fixed or variable. PSO was shown to be effective on solving a number of two-function MO

problems[100].
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A PSO variant was developed separately but simultaneously for solving MO problems[83]. This

proposed system was based on the existence of a global repository in which every particle recorded its

experiences after each cycle. This repository was then used for each particle in the swarm to identify a

leader that would guide its search. Results for this algorithm indicated a high degree of competitiveness

with other current MO techniques[83].

2.7.4.3 Dynamic Optimization

Further specific research has been done into PSOs that operate on dynamic landscapes. These variants

are adaptive to an extent; they are designed to expect changes in the optimization problem landscape

and change their behaviour in order to account for this. The objective functions used in such dynamic

problems usually operate as a function of time, altering the locations of their optima at regular or irregular

intervals through the optimization process.

As long as the changes to the objective function are slow and regular enough, it was shown that a

normal PSO with no changes was able to find and follow the optimum through the search space [101],

while a minor adjustment to randomize the inertia weight U(0.5, 1) also showed promising results for

simple dynamic problems [57].

More complex dynamic problems are not so easily solved however, due to two factors [85]:

1. Outdated memory - Every time the objective function is updated, the best found positions of every

particle becomes inaccurate, and hence liable to guide other particles toward suboptimal search

areas.

2. Diversity loss - While convergence is usually desirable in static problems, when it takes place

on dynamic ones it can eventually restrict the swarm to such a limited space that it is unable to

re-diversify itself in order to search for new optima.

Many approaches have been taken to working with dynamic landscapes [84][6][96][102]. Most

deal with the issue of outdated memory by assuming that changes to the problem landscape can be easily

detected by means of stationary “sentry” particles that are constantly evaluated for changes to their

objective value. When a change is detected, the personal best position for each particle in the swarm

is reset to the current position. An alternative approach is to re-evaluate all of the best found positions

and either reset them or leave them as they are, dependent on which option is associated with the better

objective value [91].

Circumventing the second issue, that of diversity loss, is somewhat more difficult. Re-initializing

some proportion of the particles in a swarm has been proposed [6], though this requires hard-coded

input tuned to the specific problem as to when this should take place. Diversity control was built into

the swarm in another approach, so that a cloud of non-converging “charged” particles surrounded a
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nucleus of normal constricting particles [103][84]. This had the effect of maintaining diversity while

allowing a core of particles to exploit knowledge of the discovered optimum. The most recent and most

effective method involves the use of multiple swarms to discover and track all of the peaks in a dynamic

environment using the previous charged particle method [104]. This technique was soon expanded to

include the properties of exclusion, whereby swarms repel each other to avoid settling on the same peak,

and anti-convergence: when all swarms have settled on a peak, the worst of them is completely re-

initialized in the search space[85]. This ensures that there is constantly at least one swarm searching for

newly-created peaks.

2.8 Applications of PSO

Despite its relative newness next to other optimization algorithms, PSO has proved very popular for

use in practical applications. Detailing all of the diverse uses of the algorithm would require an entire

report in itself; fortunately one such report does exist [105]. The most common and some of the most

interesting uses are described in this section.

Neural network training is frequently used as a test for optimization algorithms; this was the case

for PSO as well. One of the publications that originally proposed the algorithm used it for training the

weights in several neural networks, and reported it to be as effective as the most common training method

of backpropagation [2]. PSO was later shown to be superior to a gradient search technique for training

a neural network for the XOR problem, a common benchmark [106]. A more practical approach with

real-world results was undertaken after the development of inertia weight which used the algorithm to

train a neural network to recognize patterns in the symptoms of patients suffering from essential tremor,

a.k.a. Parkinson’s disease [107].

On the topic of medical uses of PSO, the algorithm has been used on several occasions for can-

cer classification applications [108][109][110]. These applications used specialized versions of several

optimization algorithms and reported that a properly tuned particle swarm algorithm showed very com-

petitive performance for this purpose.

A previous review of the field [111] included various reported uses of the algorithm. One of these

was for evolving asynchronous neural networks (both weights and structure) used for end milling [112].

Another involved use of a PSO in conjunction with backpropagation to train an asynchronous neural

network as a state-of-charge estimator for battery packs used in electric vehicles [113].

Another popular use of PSO is in the design of electricity network and load dispatch. An example

of this use can be seen in [114], where PSO is used to solve mixed-integer nonlinear problems, showing

results competitive with established methods of the field. A very thorough examination of most of these

applications to date can be found in [115].

Exhaustive listings of PSO publications on theory and applications can be found in [105] and [111].
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Figure 2.4: Proportion and Quantity of Publications in Fields of Application for PSO

Findings in [105, 111], as well as more specific lists of applications [116, 117, 118] are consolidated to

table 2.4 to summarize the number of papers and proportionality of fields of application in PSO.

2.9 Summary

As early as the initial proposals[1, 2] it was realized that PSO was more than an attractive simulation of

biological flocking and swarming. These behavioural characteristics could be exploited for optimization

within the broader context of mathematical optimization. This field is well-defined and extensive, sub-

suming both local optimization, the search for a “good” solution, and global optimization, the search for

the best solution. A number of methods for performing these optimizations have been introduced, many

of which are also biologically inspired. Such methods are categorized as evolutionary optimizers when

they use principles of evolution for their functioning, or swarm intelligence optimizers when they are

based on the principles of communication and cooperation amongst a set of agents.

PSO is a method based on swarm intelligence, along with other such notable algorithms as stochas-

tic diffusion search (SDS) and ant colony optimization (ACO). The large number of variants and ap-

plications described above are testament to its popularity. What is noticeably lacking from the lit-
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erature, however, is a standard formulation beyond the original, first proposals[1, 2]. A great many

improvements have been made to this extremely basic original algorithm, including methods to con-

trol instability[55, 10], a convergence proof[10], and research into the connective topologies between

particles[62, 12]. With no well-defined standard the field has fragmented to some degree, with no com-

mon baseline of comparison and no common source from which to start research into variants.

At the same time, this lack of a common starting point has led to the development of very di-

verse and effective algorithms using PSO-style mechanics. These include FIPS[62, 81], the bare-bones

PSOs[79, 80], Tribes[11], and numerous variants specialized for use on specific types of problems, seen

in section 2.7.4. However, as each of these was developed independently without a means of compar-

ison, determining the characteristics of performance in a comparative/competitive sense can only be

accomplished by reimplementation by an interested party. Again, comparing against a known standard,

working on a clear benchmark of problems, would provide a means of placing an algorithm amongst the

other variants.

With the exception of the bare-bones algorithms[79, 80], the PSO variants discussed in this chapter

were all developed by adding to or altering the functionality of PSO. This work proposes that a more

effective approach can be taken by removing components of the update equations – ensuring that the

original functionality is retained – and resulting in a stripped-down form that contains no unnecessary or

extraneous calculations.

Finally, such a simplified form could then be used to advance the research of adaptive forms of

PSO. In the same way that the original, static algorithm has been extended through the addition of new

functionality and components of varying complexity, to date all adaptive forms of PSO have involved

substantial alterations to the core algorithm. Currently there exists no simple, straightforward approach

to adapting the variable parameters of the swarm that is easily reproducible and extendable. The goal

of this work is to fill this gap in the field through development of such a system that is usable by any

interested party for research into both improved performance on standard problem types, and expansion

into areas for which the static algorithm has to be extensively specialized to achieve suitability.
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Defining a Standard for Particle Swarm

Optimization

3.1 Introduction

In the years since the introduction of particle swarm optimization (PSO) as a new method for global

optimization[1, 2], many researchers have expanded on the original idea with alterations ranging from

minor parameter adjustments to complete reworkings of the algorithm. Others have used PSO for com-

parison testing of other global optimization algorithms, including genetic algorithms and differential

evolution[39, 119]. The PSO field has expanded dramatically since its inception, but until recently there

has been little to no consensus as to what constitutes the “standard” or “canonical” PSO algorithm.

Despite regular usage of the term, the actual implementation of this undefined standard varies widely

between publications. Also troublesome is the fact that many of the variations on the particle swarm

algorithm that are used for comparison testing do not take into account some of the major developments

that have taken place since the original algorithm was proposed.

This lack of cohesion is understandable to an extent - despite its simplicity, the large number of

minor variations on the PSO algorithm have led to such a wide assortment of choices that it is often

difficult to determine which version can be expected to give the best or most relevant performance for a

given research question. Some variations show improved performance on a specific class of problems,

while others may have been created or adapted for use on an entirely different type of search space.

Further, many times a study focuses on the problem being solved, or on the details of comparative

performance, and neglects to give a detailed explanation of the optimization algorithm or algorithms

under investigation to the extent that both algorithm(s) and results can be reproduced.

Due to this often overwhelming amount of choice, many researchers have settled for using minor

variations on the form of the PSO algorithm as originally proposed over 15 years ago. Unfortunately,

this original algorithm is no longer in any way representative of the state-of-the-art in PSO and has
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not been for some time. This chapter examines the major improvements that have taken place in the

field since that original definition, and defines a standard for PSO that takes these into account. It is

important to note that this definition should by no means be viewed as the optimal configuration for PSO

across all problem sets, but rather as an evolution of the original algorithm designed to take advantage of

subsequent generally applicable improvements that have come from a number of independent sources.

Having a well-known, strictly-defined standard algorithm provides a valuable point of comparison which

can be used both in this work as well as throughout the field of research to better test new concepts and

alterations.

As a first step, it is necessary to define the exact properties and functioning of the PSO algorithm.

A clear definition not only clarifies the research of this work as a whole, it also provides a standard,

fixed version of the algorithm that can be used by any interested party as a representative baseline for

comparative purposes.

This chapter defines such a standard form of PSO that will be used throughout the work. It takes into

account the developments introduced to control instability in particle motion discussed in section 2.5.1

and the research into topology from section 2.5.2. Of the available options, a single approach to each of

these aspects of the algorithm is adopted into the standard. These selections are based on a combination

of results obtained through empirical research performed here, and simplicity.

There are several further aspects of the PSO optimization process that have, prior to this work, not

been studied in as much detail, consistently applied, or proposed as standard settings in the same way as

the previous developments. These are the initialization conditions for particles, the behaviour of particles

when encountering a boundary, the number of particles in a swarm, and the process of examination of

performance results. Each of these is examined in turn and a single approach or value is selected for use

in the standard swarm.

Along with a straightforward laying out of the algorithm, information demonstrating what sort

of performance and behaviour can be expected from this standard swarm is a necessary part of the

definition. Empirical results are obtained and used as evidence of the optimization ability of this baseline,

as well as aspects of its method for performing the optimization.

Finally, the full, exact definition of the algorithm is presented in a form facilitating implementation.

3.2 Definable Properties

3.2.1 Swarm Communication Topology

The lbest swarm model constitutes perhaps the most significant variation to the original PSO algorithm,

and was in fact proposed in one of the very first PSO publications[1]. This topology did not commonly

appear in PSO literature for quite some time, due to this original investigation that showed inferior

performance when compared to the global gbest model. More recent research has revealed that when
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given sufficient time to optimize, lbest swarms return improved results across many standard problem

sets, particularly when used in conjunction with other improvements to the algorithm[87].

As mentioned previously, while lbest, or local can be used to describe any non-global topological

model, both early research[1] and further major investigations into PSO topologies[62, 12, 87] have

used the term in reference to a single K = 2 ring model – this practice is adopted in this work. While a

number of different limited communication topologies have been tested with varying results as described

above, the lbest ring model used here is the simplest, most reproducible form. The lbest ring model

connects each particle to only two other particles in the swarm, in contrast to the gbest model where

every particle is able to obtain information from the very best particle in the entire swarm population.

Having the swarm converge when it has found the global optimum is obviously beneficial and necessary,

but when the converged-upon location is suboptimal, the convergence is referred to as “premature” and

is undesirable as it prevents the algorithm from escaping from an inferior local optimum.

Interestingly, it is the slower rate of convergence of the lbest model that was originally responsible

for the disregard of it as an acceptable alternative topology[1]. The much faster convergence of the gbest

model seems to indicate that it produces superior performance, but this is misleading. While results for

the gbest model are indeed superior for many problems relatively early in the optimization process, the

best found fitness for the lbest model quite often surpasses that of the gbest after some sufficient number

of function evaluations have been performed, particularly on multimodal problems.

Despite the advantages of a local topology, it is important to note that it should not always be consid-

ered to be the best choice in all situations. The faster convergence rate of a global topology will usually

result in better performance on simple unimodal problems than that of any non-global topology due to

the lack of any danger of convergence to a suboptimal local minimum. Even on some very complex

multimodal problems a gbest model swarm can deliver performance competitive with the lbest model

given proper circumstances. For thorough, rigorous results tests should be run using both topologies, but

in the interest of defining a single standard PSO algorithm, the superior performance of the lbest model

over the majority of benchmarks qualifies it as the better choice for cases where a straightforward means

of comparison is desired. In any case, modern research performed using only swarms with a global

topology is incomplete at best.

The inclusion of the local ring topology as part of a standard algorithm for particle swarm opti-

mization comes with a caveat, however. Given the slower convergence of the lbest model, more function

evaluations are required for the improved performance to be seen. This is especially important on uni-

modal functions, where the fast convergence of the gbest model combined with a single minimum in

the feasible search space results in quicker performance than that of the lbest swarm with its limited

communication.
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3.2.2 Initialization and Boundary Conditions

It has been suggested that many optimization algorithms have what is described as a bias toward some

area of the space in which the population is initialized. Research has shown that some algorithms can

return superior performance when the global optimum of the problem being solved is located in or near

the center of the area in which the swarm is initialized[120].

This is especially problematic in algorithm comparison: as a basic example, it is simple to construct

an algorithm that instantly finds the point at the center of the feasible bounds through a single mathe-

matical equation. If that point is also the global optimum, the simple algorithm would appear to show

superior optimization performance to any other heuristic algorithm, when in actuality the algorithm’s

ability to find that optimum would be totally dependent upon it being located at the easily-calculated

center of the search space. Benchmark problems with the global optimum at the center of the feasi-

ble bounds are common in optimization literature, so adjustment is necessary for accurate performance

testing.

The common method for negating any centrist bias in an optimization algorithm is to shift the

function when the optimum is defined at the center of the feasible search space. This is also known as

the center offset method. Moving the optimum away from the point which the algorithm is supposedly

biased toward reduces or eliminates any inappropriate advantage that may be gained.

Another proposed method of alleviating this potential bias is population initialization within a sub-

space of the entire feasible search space that does not contain the global optimum[121], often referred to

as region scaling. Ensuring that the global optimum does not lie within this subspace forces the swarm to

expand its search beyond its initial limits, and eliminates its ability to immediately converge to a single

point without exploring the entire space to find the global optimum of the problem.

Both these methods are most applicable as research standards for performance testing and algo-

rithm comparison when both the problem and its optimum are well-known and understood; for practical

optimization applications they are obviously unnecessary and self-defeating.

It can be shown that a bias toward the center can arise in algorithms similar to PSO when the

trajectory of a particle is artificially limited at the boundary of the search space[120]. To avoid any effect

on the performance of the algorithm, the simplest and most straightforward method for handling particles

which cross the boundary of the feasible search space is to leave their velocity and infeasible position

unaltered. The fitness evaluation step is then skipped, thereby preventing the infeasible position from

being set as a personal and/or global best. Using this method, particles outside the feasible search space

will eventually be drawn back within the space by the influence of their personal and neighborhood bests.

As it is possible under certain very rare circumstances for particles to develop extremely high velocities

when they are allowed to continue past the edge of the defined search space, the use of a very generous

vmax value has been recommended to keep the particle from going too far beyond the feasible region
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[60]. Like the original necessary vmax parameter, this optional value has never been explicitly defined,

but for the purposes of this study it was set to be 10× the size of the search space in each dimension,

i.e. 10 × (xmax − xmin). While this is good practice to account for extraordinary cases, in all of the

simulations performed in this work the limit was never reached – constriction always prevented particle

velocity from growing beyond acceptable levels.

These boundary conditions, referred to colloquially as “letting the particles fly”[122], prevent this

from being a contributing factor in any potential chance of a bias toward the center of the search space;

region-scaled swarm initialization and shifting in the case of a centrally-located optimum will substan-

tially reduce or eliminate the risk of such a centrist bias altogether.

3.2.3 Number of Particles

Empirical results from research into PSO have shown that the number of particles composing the

swarm can influence the resulting performance by a varying amount, depending on the problem being

optimized[123]. Some test functions show improved performance as the size of the swarm is increased,

while others tend to be better optimized by smaller swarms. There seems to be no definitive value for

the swarm size that is optimal across all problems, even in a very limited benchmark, so to avoid tuning

the algorithm to each specific problem, a compromise must be reached.

This compromise has to take into account a number of different effects that the swarm size has

on performance and behaviour. In the case of unimodal problems, swarms need only enough particles

to converge to the single optimal point – once the minimum number of particles necessary for this has

been determined, every particle over that amount is only adding an extraneous function evaluation at

every iteration. This isn’t as much the case for multimodal landscapes however, as larger swarms are

able to explore more of the landscape, and take longer to settle down to a single basin of attraction.

This parameter further interacts with the topology being used: a swarm using an lbest ring topology

will disseminate information to the entire swarm more and more slowly with each additional particle,

while speed of dissemination for a swarm using a gbest global topology is unaffected by the number of

particles. Even further, the dimensionality of the landscape plays a role in the effect of this compromise.

The size of a landscape increases exponentially as the number of dimensions is increased, necessitating

larger and larger swarm sizes for effective optimization.

The fact that optimal swarm size is highly dependent on the problem to which the swarm is being

applied means that a single value for this property in a standard definition is correspondingly dependent

on the benchmark of problems on which the standard is tested. The benchmark used here is defined, and

the experimental process given, in section 3.3.1, and a single value for the standard is selected as the one

for which the best overall performance is obtained via this empirical process.
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3.2.4 Statistical Analysis of Results

Having gathered some empirical data, differences in performance between several versions of algorithms

can become notable. One version may be more likely than another to reach a criterion, or the final

function result after some number of function evaluations or iterations may be better, averaged over

some number of trials. The real issue, though is whether or not it is significantly better – in other words,

is there a real difference between the two versions, or did chance play the deciding role.

It is not necessary to undertake any statistical analysis that is especially complicated, difficult, or

time-consuming when comparing results taken from the application of algorithms such as PSO. The

practice of performing t-tests on pairs of groups of data gives a p-value which is compared to a constant

α to determine whether a difference is significant or not.

There is a problem, however, in conducting multiple significance tests. Because they are proba-

bilistic, it is possible that some results are due simply to chance – even random data generated from

the same distribution will differ “significantly” sometimes. Statisticians have addressed this problem in

various ways. Corrections known in the literature include Duncan, Bonferroni, Sheffé, Fisher, and Tukey

adjustments, amongst others. These approaches typically manipulate α or the p-value in some way that

corrects for the likelihood of forming spurious conclusions due to chance.

Unfortunately, many of these corrections are too conservative – good results are rejected simply

because the adjustment was too severe. A good, widely accepted alternative is a modified Bonferroni

procedure known as Holm-Bonferroni[124], which manipulates the α value in a way that protects against

capitalization on chance, without penalizing the obtained results[125].

A number of t-tests are conducted, and p-values recorded. These are ranked from smallest to largest,

and the ranks recorded. These ranks are then inverted, so that the highest p-value gets an inverse-rank of

1, and the test with the lowest p-value gets an inverse-rank of N , the number of tests performed.

Next, α is divided by the inverse rank for each observation. Assuming the typical desired α = 0.05,

then the first observation receives a new value of α′ = 0.05/N , and so on, with the worst result receiving

a new value of α′ = 0.05/1 = 0.05.

These new values of α′ are then compared down the list of inverse-ranked t-tests, checking each

p-value against the new α′ until a nonsignificant result is found. If p < α′, then a test is reported as

significant. When the first nonsignificant result is encountered, the subsequent observations can be taken

as nonsignificant and reported as such.

This procedure is used to validate t-tests, which compare pairs of groups. In comparing more than

two groups over a set of functions, it may be necessary to perform a great number of t-tests. In this

case, it may be wise to reject certain tests at the beginning, for instance if one group is always worse

than others, or if some means are identical. This cuts down on the number of tests and keeps α′ from

becoming too small.
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3.3 Results

3.3.1 Performance

Three PSO algorithms were compared in the interest of demonstrating the performance gains granted

by improvements to the technique: the original 1995 algorithm, a constricted swarm using a global

topology, and a constricted swarm using a local topology.

Each algorithm was run on an array of common benchmarks, shown in table 3.1 on page 51, for

600000 evaluations per function. These benchmarks were chosen for their variety - functions f1−f3 are

unimodal functions with a single minimum, f4−f9 are complex high-dimensional multimodal problems,

each containing many local minima and a single global optimum, and f10 − f14 are lower-dimensional

multimodal problems with few local minima and a single global optimum apart from f10, which is

symmetric about the origin with two global optima, as well as their previous definition in well-known

and respected publications[35, 126]. All swarms were randomly initialized in an area equal to one quarter

of the feasible search space in every dimension that was guaranteed not to contain the optimal solution.

Initialization ranges for all functions can be found in table 3.2 on page 54.

Performance was measured as the minimum error |f (x)− f (x?)| found over the trial, where f (x?)

is the optimum fitness for the problem.

Plots of relative performance for various swarm sizes under an lbest topology are shown in fig-

ures 3.1 and 3.2 for problems on which the swarm was able to find the global optimum on at least 10%

of trials for each size, and hence return a value for the number of function evaluations required. These

results demonstrate the complexity of choosing a single best value. The unimodal f1 problem was solved

by every swarm configuration, but the number of necessary function evaluations increased linearly as the

swarm size was increased. Swarms with more particles were better able to solve the multimodals f7 and

f9, but the number of necessary function evaluations rose on either side of specific “best” configurations.

The three shekel problems, f12–f14, seemed to show little correlation between swarm size and speed of

successful optimizations. These types of complex results were seen for the entire benchmark.

The complications involved in recommending a single value for swarm size make this a difficult

aspect of defining a standard. Fortunately, this standard is not intended to be the single best available

configuration of the particle swarm algorithm, but merely an indicator of what can be expected as a

reasonable configuration, providing acceptable performance. In support of this, swarms of almost all

reasonable sizes have been shown to perform acceptably – i.e. significantly better than a random search

– on most standard benchmarks. 50 particles were used in the final results presented here, as swarms of

this size performed best by a very slight margin when averaged across the entire range of test problems.

It should be taken into account, however, that this improved performance is tied directly to the

benchmark that was used in this study, and even then is still an average - no one value was clearly
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Effect of swarm size on performance of a constriced lbest PSO on f01
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Effect of swarm size on performance of a constriced lbest PSO on f07
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Figure 3.1: Effect of swarm size on performance on problems f1 and f7. Mean performance over 50
trials, and number of function evaluations required in trials where the optimum was attained are shown.
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Effect of swarm size on performance of a constriced lbest PSO on f09
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Effect of swarm size on performance of a constriced lbest PSO on f12
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Figure 3.2: Effect of swarm size on performance on problems f9 and f12. Mean performance over 50
trials, and number of function evaluations required in trials where the optimum was attained are shown.
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Function Feasible Bounds Optimum Initialization
f1 (−100, 100)D 0.0D (50, 100)D

f2 (−100, 100)D 0.0D (50, 100)D

f3 (−30, 30)D 1.0D (15, 30)D

f4 (−500, 500)D 420.9687D (−500,−250)D

f5 (−5.12, 5.12)D 0.0D (2.56, 5.12)D

f6 (−32, 32)D 0.0D (16, 32)D

f7 (−600, 600)D 0.0D (300, 600)D

f8 (−50, 50)D −1.0D (25, 50)D

f9 (−50, 50)D 1.0D (25, 50)D

f10 (−5, 5)D (−0.0898, 0.7126) , (2.5, 5)D

(0.0898,−0.7126)

f11 (−2, 2)D (0,−1) (1, 2)D

f12 (0, 10)D 4.0D (7.5, 10)D

f13 (0, 10)D 4.0D (7.5, 10)D

f14 (0, 10)D 4.0D (7.5, 10)D

Table 3.2: Optima and initialization ranges for all functions

Random Original PSO Constricted Constricted
Search LBest GBest

f1 Success 0% 0% 100% 100%
Best 2.11E4 1.91 0.0 0.0
Mean 3.27E4±460 2.55±0.04 0.0±0.0 0.0±0.0
Worst 3.82E4 3.01 0.0 0.0
FEvals - - 109253±360 39262±312

f2 Success 0% 0% 0% 100%
Best 2.57E4 3.31 8.66E-8 0.0
Mean 3.47E4±485 4.64±0.08 2.39E-6±4.86E-7 0.0±0.0
Worst 4.13E4 5.98 2.27E-5 0.0
FEvals - - - 314435±1751

f3 Success 0% 0% 0% 0%
Best 3.25E7 42.83 1.32E-4 5.47E-8
Mean 6.13E7±1.28E6 151.2±24.0 2.81±0.55 3.29±1.45
Worst 7.78E7 596.1 14.36 72.3
FEvals - - - -

Table 3.3: Results for original PSO vs constricted form on unimodal problems

optimal on all problems. In the results obtained, no swarm size between 20 – 100 particles produced

results that were clearly superior or inferior to any other value for a majority of the tested problems.

Results for each problem were averaged over 50 independent trials, and are displayed in tables 3.3

– 3.5. Convergence plots for selected functions are shown in figures 3.3–3.4. In cases where a value was

< 10−15 it was rounded to 0.0 in order to accommodate reproduction using programming languages that

may not guarantee floating point precision at smaller values. Results that attained this level of error were

counted as “successful”, though this should be taken only as a means of brief high-level comparison –

it is possible when comparing two algorithms for one to attain a better mean error but a lower success

rate, as in the case here of f6, where the gbest swarm was successful in fewer cases, but performed

better on average than the lbest swarm. Which measure is preferable depends on the information that is
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Random Original PSO Constricted Constricted
Search LBest GBest

f4 Success 0% 0% 0% 0%
Best 6816 3561 2961 2803
Mean 7559±34 4126±43 3264±21 3536±39
Worst 7910 4769 3614 4185
FEvals - - - -

f5 Success 0% 0% 0% 0%
Best 278.1 376.6 98.50 66.66
Mean 304.7±1.68 416.6±2.99 149.0±3.48 129.4±3.83
Worst 325.6 462.7 198.0 193.0
FEvals - - - -

f6 Success 0% 0% 20% 18%
Best 18.05 20.13 0.0 0.0
Mean 19.24±0.04 20.23±0.006 14.68±1.16 13.6±1.23
Worst 19.56 20.34 19.75 19.79
FEvals - - 239923±39688 84809±1725

f7 Success 0% 0% 98% 32%
Best 191.3 0.965 0.0 0.0
Mean 295.7±4.14 1.0±0.002 1.48E-4±1.48E-4 1.83E-2±3.45E-3
Worst 345.1 1.03 7.4E-3 0.10
FEvals - - 124726±4922 39818±351

f8 Success 0% 0% 100% 64%
Best 2.63E7 7.31 0.0 0.0
Mean 8.5E7±2.87E6 14.06±0.7 0.0±0.0 1.79E-1±5.26E-2
Worst 1.28E8 30.44 0.0 1.97
FEvals - - 128167±1107 46294±1366

f9 Success 0% 0% 100% 74%
Best 9.2E7 0.082 0.0 0.0
Mean 2.29E8±6.2E6 0.112±0.002 0.0±0.0 4.61E-3±2.04E-3
Worst 3.13E8 0.134 0.0 9.89E-2
FEvals - - 118098±440 43565±1066

Table 3.4: Results for original PSO vs constricted form on complex multimodal problems.

desired. In this case, significance aside, the gbest swarm can be expected to return a better result even in

unsuccessful trials, while the lbest swarm can be expected to be successful more often.

Results for a random search of the problem landscape over the same number of function evaluations

are included as a point of comparison for the performance of each algorithm. It is interesting to note that

for seven of the fourteen problems, the original PSO algorithm is outperformed by this method. This is

in part due to the fact that in its original form, the algorithm had no means of guaranteed convergence,

and was thus unable to fully exploit discovered optima. Additionally, and perhaps more importantly, the

original algorithm used a global communication topology, from which the fast information exchange rate

means that all particles are attracted to the same point, making discovery of new peaks more difficult.

This is supported by the fact that each of the problems which were better optimized by the random

search are multimodal, and further by how the random search gave equal or superior performance to the

constricted gbest swarm on f12, f13, and f14.

Statistical tests were performed on these results to show whether performance improvements are

significant. As the performance of the original PSO algorithm is poorer than the others for all but a

single function where it was statistically equivalent to the constricted gbest swarm (f12), these tests were

limited to comparisons of the two constricted swarm models over all functions. These results are shown

in table 3.6. The lbest swarm showed significantly superior performance over the gbest swarm for six of



56 Chapter 3. Defining a Standard for Particle Swarm Optimization

Function Evaluations

B
es

t F
itn

es
s

0 50000 100000 150000

1e
−

16
1e

−
11

1e
−

06
1e

−
01

1e
+

04 Original PSO Algorithm
Constricted GBest PSO
Constricted LBest PSO

(a) f1 (Sphere/Parabola)

Function Evaluations

B
es

t F
itn

es
s

0 50000 100000 150000

1e
+

01
1e

+
03

1e
+

05
1e

+
07

1e
+

09

Original PSO Algorithm
Constricted GBest PSO
Constricted LBest PSO

(b) f3 (Generalized Rosenbrock)

Function Evaluations

B
es

t F
itn

es
s

0 50000 100000 150000

0
10

0
20

0
30

0
40

0
50

0
60

0

Original PSO Algorithm
Constricted GBest PSO
Constricted LBest PSO

(c) f5 (Generalized Rastrigin)

Figure 3.3: Mean algorithm convergence for problems f1, f3, and f5.
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Figure 3.4: Mean algorithm convergence for problems f7, f9, and f12.
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Random Original PSO Constricted Constricted
Search LBest GBest

f10 Success 0% 0% 100% 100%
Best 8.03E-6 2.38E-10 0.0 0.0
Mean 1.75E-4±2.26E-5 1.25±0.191 0.0±0.0 0.0±0.0
Worst 6.97E-4 3.13 0.0 0.0
FEvals - - 13528±228 13266±301

f11 Success 0% 0% 100% 100%
Best 7.82E-6 4.87E-9 0.0 0.0
Mean 2.15E-3±3.23E-4 239.8±53.2 0.0±0.0 0.0±0.0
Worst 1.03E-2 837.0 0.0 0.0
FEvals - - 9313±81 7258±66

f12 Success 0% 0% 86% 28%
Best 0.774 9.05E-5 0.0 0.0
Mean 3.45±0.183 4.06±0.489 0.708±0.251 4.42±0.42
Worst 6.06 7.52 5.10 7.52
FEvals - - 21751±3860 29565±11193

f13 Success 0% 0% 88% 44%
Best 0.771 5.79E-5 0.0 0.0
Mean 3.44±0.182 4.64±0.491 0.823±0.323 3.66±0.48
Worst 6.06 8.57 7.64 8.57
FEvals - - 28871±12526 25992±10598

f14 Success 0% 0% 90% 54%
Best 0.772 3.28E-5 0.0 0.0
Mean 3.44±0.182 5.82±0.437 0.759±0.326 3.06±0.49
Worst 6.07 8.86 8.11 8.86
FEvals - - 17690±861 37553±15140

Table 3.5: Results for original PSO vs constricted form on simple multimodal problems.

the fourteen test functions (f4, f7–f8, and f12–f14) while the gbest swarm was significantly superior on

two functions (f2 and f5). There was no significant difference in performance between the two swarm

models for the other six test functions.

These results show that both the global and the local models of constricted swarms return signif-

icantly improved performance over the original PSO algorithm. Further, it is clear that in many of the

test cases, the lbest model swarm can be reliably expected to return better results than the gbest model

swarm. This improved performance is sufficient to make the local ring topology the single recommended

topology for the purposes of this study, though it must be stressed that any complete comparison should

at a minimum make mention of the performance of the gbest configuration.

3.3.2 Behaviour

The phenomenon previously demonstrated in figure 2.3 from section 2.5.2.1 helps to account for the very

different behaviour and performance of swarms with an lbest communication topology when compared

to those using a gbest topology. While a globally-connected swarm passes information about the best

found position to all particles instantaneously, the locally-connected swarm only passes on the informa-

tion about the best found position of a limited subset of the entire population. This leads to individual

particles “knowing” about a point of attraction that may or may not be the same point that is known to

other parts of the swarm, which has the effect of dividing the population into multiple sub-populations,

each one attracted to a different area of the problem landscape.

With this concept in mind, we can postulate that generally speaking, there will be three different
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Func p-value Rank Inverse rank New α Significant
f12 5.05E-11 1 11 0.004545 Yes

f4 2.86E-8 2 10 0.005 Yes

f7 3.09E-6 3 9 0.005556 Yes

f13 0.000005 4 8 0.00625 Yes

f2 0.000011 5 7 0.007143 Yes

f14 0.000196 6 6 0.008333 Yes

f5 0.000261 7 5 0.01 Yes

f8 0.001373 8 4 0.0125 Yes

f9 0.02791 9 3 0.016667 No

f3 0.5245 10 2 0.025 No

f6 0.7592 11 1 0.05 No

f1 = 12 - - No

f10 = 13 - - No

f11 = 14 - - No

Table 3.6: Detailed significance findings for constricted swarms with gbest vs lbest topologies

phases that a swarm goes through during an optimization. Two of these three phases are already well-

known in the optimization literature as exploration and exploitation. What is proposed here is a third

phase, the discovery phase.

This phase occurs between exploration and exploitation, at the point where the swarm has discov-

ered multiple optima, and is simultaneously exploiting each one in an effort to determine which contains

the best single point. Depending on the relative fitness of the optima and the exploitation ability of the

sub-population on each one, this phase can be very short, or extremely prolonged.

The most extreme example of this phase is found when a swarm is set to optimize a landscape

containing multiple global optima with equal fitness. As none of the sub-swarms is able to find an

position with a superior level of fitness over the other sub-swarms, each of them maintains its attraction

to the peak on which its particles have set their personal best positions via the cognitive component

of the velocity update, (pi − xi). A particle at the “edge” of the sub-swarms may be attracted to the

different optimum being exploited by its neighbors via the social component (pg − xi), but as it will be

unable to find a position that is an improvement to its own pi which will allow it to update this value,

this attraction will only ever account for a portion of its movement – it will never be able to break away

from its attraction to its current personal best position on the peak that the subswarm it is a part of has

exploited.

In practice, this situation can arise even on landscapes where there is a single discovered global

optimum. Given infinite function evaluations, every particle in the swarm will eventually be drawn to

the single best point discovered. In finite terms, however, the number of function evaluations required
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for this to happen is based on multiple factors, most notably the weighting of the social term, and the

speed of communication between particles. A globally-connected swarm will settle down to a single

point relatively quickly, as every particle will be immediately attracted to the best found point. With a

minimally-connected ring topology, however, a particle on the opposite side of the ring from the particle

at the global optimum must wait until every intervening particle, N/2 of them, has also found this global

optimum before it can be informed of its location. This can result in situations where the entire swarm

never converges to a single optimum within the lifetime of the optimization.

Naturally, whether or not a prolonged discovery phase is beneficial to optimization depends on

the problem being optimized. A swarm optimizing a unimodal problem has no need for discovery, so

simultaneous exploitation of multiple points on the single peak would be of limited value. A swarm on

a highly multimodal problem, on the other hand, would benefit from the ability to temporarily optimize

several different peaks, eventually “choosing” the single best for exploitation by the entire swarm.

While the concept of a discovery phase seems reasonable, and can be directly observed via images

like figure 2.3, what is needed is an actual measure that indicates the current phase of the swarm. Harti-

gan’s dip test of unimodality[127] was selected to fulfill this role. This test produces a single value that

indicates the level of uni/multimodality in the distribution of the distances between the best found posi-

tions of the particles in a swarm by calculating the difference between that distribution and the unimodal

distribution that it is nearest to, i.e. the “best fit.” A swarm with particles that are perfectly uniformly

distributed will have a dip statistic value of 0.0, which increases as the distribution becomes more and

more multimodal. Whether or not the calculated value indicates a multimodal distribution is dependent

on the sample size and the desired level of probability.

In the case presented here, the swarm size is set to N = 50 particles (see section 3.2.3), giving a

sample size of 50×49
2 = 1225 particle separations, and our desired probability is the typical α = 0.95.

According to a reference table of values calculated for numerous sample sizes[128], the threshold of

multimodality was set to dip ≈ 0.0157 – distributions of this size with values below this level will be

unimodal with 95% probability, those above will be multimodal with the same probability.

Figures 3.5 and 3.6 compare the dip values of a swarm with a global topology and one with a ring

topology over selected problems, averaged over 50 trials. The threshold of multimodality is shown as a

dotted horizontal line at dip ≈ 0.0157. These plots demonstrate the concept of the discovery phase, and

support the assertion that a more limited communication topology will prolong the phase beyond that of

a globally-connected swarm.

On all problems, both the global and the ring topologies start out in a unimodal distribution, as

would be expected after their uniform initialization within the appropriate region. The distribution

quickly becomes multimodal, as particles begin to explore the search space, attracting other particles

when improved positions are discovered. This lasts only a short time for both topologies on the uni-
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Figure 3.5: Dip statistic values of swarms with global and ring topologies on problems f1 and f5
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Figure 3.6: Dip statistic values of swarms with global and ring topologies on problems f8 and f12
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Figure 3.7: Dip statistic values for an lbest swarm on f12 until unimodality

modal f1 landscape before the swarm again assumes a unimodal distribution, with all particles clustered

around the same point at the fittest point of the optimum.

While the two swarms converge in much the same manner on the unimodal problems, the multi-

modal problems show the expected differences in behaviour. For these, the globally-connected swarm

again expands quickly into the exploration phase, but contracts down to a unimodal distribution nearly as

quickly, with all particles converged to the same point on the landscape. The distribution of the locally-

connected swarm, however, maintains its multimodal distribution for a much longer time, indicating

multiple groups of particles spread across multiple points. On several of the problems the swarm did not

completely converge within the allotted 600000 function evaluations – this is expected if the swarm is

unable to find the global optimum, as there may be multiple identical local optima that subswarms be-

come split across. The Rastrigin problem, f5, was one of these, where the dip statistic stayed above the

threshold of modality for at least a tested 1E10 function evaluations in all cases. Eventual distribution

unimodality can be verified for problems with unique local optima given enough evaluations, e.g. as

shown for f12 in figure 3.7.

Given the straightforward method of calculating and evaluating this measure over time, and its

applicability to any optimization technique using a distributed population with definable “distances”

between solutions, this dip statistic serves as a good description of the effect of communication on the

behaviour of an algorithm.
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3.4 Definition of Standard PSO
As defined above, the standard PSO algorithm proposed in this thesis is composed of:

• a local ring topology,

• the constricted update rules in equations 2.5 and 2.8,

• 50 particles,

• boundary conditions wherein a particle is not evaluated when it exits the feasible search space, and

• non-uniform swarm initialization when used for testing purposes (unnecessary for practical appli-

cations).

Using these components, we can expand the basic definition shown in the PSO algorithm on page 26

to the following “standard” form:
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The Standard PSO algorithm
initialize constant χ = 0.72984

initialize constants c1, c2 = 2.05

initialize swarm best found fitness fg = maximum possible fitness

for each particle i where i = 1..50 do

if performance testing then

initialize random particle position vector −→xi within the search space using region scaling

else

initialize random particle position vector −→xi within the search space

initialize particle best found position vector −→pi = −→xi

initialize particle velocity vector −→vi = −→xi

set particle left neighbor nli = (i− 1) unless i = 1, in which case nli = 50

set particle right neighbor nri = (i+ 1) mod 50

calculate particle current fitness fi = f(−→xi)

initialize particle best fitness fpi = fi

if particle fitness fi < fg then

set swarm best found fitness fg = fi

set swarm best found position −→pg = −→xi

for each step prior to termination criteria do

for each particle i where i = 1..50 do

initialize random cognitive weight vector −→ε1 with independent elements in U [0..1]

initialize random social weight vector −→ε2 with independent elements in U [0..1]

update particle velocity −→vi = χ (−→vi + c1ε1 • (−→pi −−→xi) + c2ε2 • (−→pg −−→xi))

update particle position −→xi = −→xi +−→vi

calculate particle current fitness fi = f(−→xi)

if particle current fitness fi < fpi then

set particle best found fitness fpi = fi

if particle current fitness fi < fg then

set swarm best found fitness sf = fi

set swarm best found position −→pg = −→xi

best found fitness for the optimization is fg

best found position for the optimization is −→pg

Since its original proposal, PSO has spawned a considerable amount of research into modifications

and variations on the original algorithm, many of which have been shown to be significant performance
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improvements on the original algorithm while still being generally applicable. Given the wide array

of choice, several improvements which should have become commonly known and used have not been

universally adopted.

To reiterate, this definition for PSO should not be considered as the “best possible option” for all or

any problem sets. There are a huge number of variations and hybridizations of the original algorithm that

potentially offer better performance on any sort of problem. What is offered here is both a standard for

algorithm comparison and a standard to represent modern PSO in the global optimization community.

It is not the intent of this definition to discourage exploration and alterations to the PSO algorithm,

but rather to give researchers a common grounding to work from. This baseline will provide a means

of comparison for development of the particle swarm algorithm, and will prevent unnecessary effort

being expended on “reinventing the wheel” on rigorously tested enhancements that are being used at the

forefront of the field.

With our basis of comparison now well-defined, we can move on to analyzing and adapting the

PSO algorithm into a form that offers significant improvements in both performance and simplicity. The

algorithm defined here still carries aspects of the original biological simulation which it was designed

to imitate[2] – next we will examine the applicability and usefulness of these properties to a purely

mathematical optimizer, and reduce the algorithm to a simplified, better performing formulation.

3.5 Conclusions
This chapter has undertaken to define a standard for the field of particle swarm optimization. This

standard selects a single approach or value for all of the variable aspects of the optimizer, each chosen

for reasons of simplicity, or in cases where this is inapplicable, for superior performance. The exact

algorithm is given in a form intended to be reproducible in every aspect by any interested party. Estab-

lishing such a standard ensures that forthcoming research is able to take advantage of beneficial modern

techniques.

A robust benchmark was defined, informed by previous work in the field[35, 126]. This benchmark

is intended for use for general performance testing and comparison of PSO-based algorithms, and can

be used for any such optimizer functioning in a real-valued problem space. As such, it is defined in this

chapter to facilitate further use in chapters 4 and 6 in their development of a simple, adaptive particle

swarm.

The variable characteristics of the particle swarm optimizer were described as the swarm commu-

nication topology, the initialization and boundary conditions, and the number of particles in the swarm.

A fixed configuration or value was selected for each of these based on previous findings in the literature

and, in the case of the number of particles, work performed here.

Performance tests were carried out comparing the PSO algorithm as originally defined in [1, 2] to
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this new standard in two forms – with a global, or gbest, topology where every particle is connected to

every other particle, and with a ring, or lbest, topology where every particle connected to its left and right

neighbors when the swarm is laid out in an open ring configuration. Both of these forms of the updated

standard algorithm showed significantly improved performance over the original algorithm. Further, the

ring topology formulation of the standard algorithm showed significantly superior performance over the

global topology formulation across the benchmark.

Behaviour of the various formulations was also examined by way of Hartigan’s dip test of

unimodality[127], which was used as an indicator as to the current phase of the optimization process

– exploration, discovery, or exploitation. The discovery phase was newly proposed in this work as the

period between general exploration of the search space and exploitation of the final optimum. It is

reached when the swarm has separated into multiple connected sub-swarms, each exploring a separate

basin of attraction in the search space, and is indicated by a returned value from the dip test indicating

multimodality within the distribution of the swarm..

With the performance improvements in mind, the new standard was formally defined. This defini-

tion encourages replication by interested parties by providing complete information about every aspect

of the algorithm.
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A Simplified, Recombinant PSO Algorithm

4.1 Introduction

With a baseline algorithm now defined, we can turn our attention to examining the supposedly integral

properties and behaviour of this standard formulation of PSO. A reasonable method of doing so is to

deconstruct the algorithm by adjusting and/or removing components to see the effects on the optimizing

ability and associated behaviour of the altered swarms.

To accomplish this, we will first investigate a variation to PSO that makes the major alteration of

removing the multiplicative randomness of the algorithm in the context of adapting it for other uses.

Originally conceived as a modification to the standard algorithm for use on self-reconfigurable adaptive

systems used in on-chip hardware processes[82], PSO with discrete recombination (PSO-DR) introduces

several appealing and effective modifications to the standard algorithm. It is one of the more interesting

advances in PSO research over the last few years because these modifications apparently do not degrade

performance while removing various issues associated with the stochasticity of the PSO acceleration

parameters that hinder theoretical analysis of the algorithm.

The physical creation of hardware-based optimizers is a rather more intricate undertaking than

software implementations, so fast, simple algorithms are desirable in order to minimize complexity. The

comparative straightforwardness of PSO to many other evolutionary optimization algorithms makes it a

good choice for this purpose, and the further simplifications in the creation of a particle swarm relying

on discrete recombination operators reduce the complexity still more. The resulting algorithm, which

can be implemented using only addition and subtraction operators and a simple 1-bit random number

generator, is well-suited for dedicated hardware settings.

Despite this rather specific original design specification, PSO-DR has shown to be a robust op-

timizer in its own right, equaling or surpassing the standard PSO implementation from the previous

chapter on a few tested benchmarks [82]. Here the original proposal of the PSO-DR concept is expanded

upon by means of alternative topologies and parameter settings, a more comprehensive test suite, sub-
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jecting the model to a burst analysis, and deriving simplified variants of the algorithm. Specifically, this

chapter introduces PSO-DR (known here as Model 1) as originally defined, and discusses the velocity

burst behaviour of particle swarm algorithms[129]. Later sections introduce a series of simplifications

to PSO-DR (Models 2 and 3), down to a form that retains the competitive optimizing speed and perfor-

mance of the standard algorithm while dropping components of the update equations that are shown to

be extraneous to effective use.

Once these new modifications to the algorithm are defined, the empirical performance of the new

models is demonstrated alongside that of a standard PSO algorithm. Following this is an empirical

investigation of bursting patterns in recombinant PSO and the implications of these patterns in the light

of their effect on the standard PSO algorithm.

4.2 PSO with Discrete Recombination

The original proposal of PSO-DR worked off of the PSO formulation implementing inertia weight, rather

than constriction. While the constricted formulation of PSO has undergone more rigorous analysis, the

two formulations are algebraically identical, and much of the literature uses the widespread IW formu-

lation for means of extension. As defined previously, the velocity and positional updates for particle i in

standard PSO (SPSO) in the inertia weight formalism are:

vid = wvid + cε1(pid − xid) + cε2(pnd − xid) (4.1)

xid = vid + xid (4.2)

where d labels components of the position and velocity vectors, d = 1, 2, . . . D, ~pi is the personal

best position achieved by i, ~pn is the best position of informers in i’s social neighborhood and ε1,2 =

U(0, 1)[130].

PSO-DR introduces a recombinant version of PSO by replacing the personal best position ~pi by

a position formed using a recombinant. In the original PSO-DR formulation this recombinant position

vector ~r is defined by:

rid = ηdpld + (1− ηd)prd (4.3)

where ηd = U{0, 1} and ~pl,r are immediate left and right neighbors of i in a ring topology. Note

that while separate random numbers ηd are used for separate dimensions d, a single value is generated

for each individual dimension and used for both occurrences of ηd in that dimension. This places ~ri at a

corner of the smallest D-dimensional box which has pl and pr at its corners.

The velocity update for the original form of PSO-DR is:
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vid = w vid +
φ

2
(rid − xid) +

φ

2
(pnd − xid) (4.4)

where φ
2 is merely the authors’ rendition of c. As PSO-DR was designed to be as efficient an

implementation as possible, it was argued that the removal of the random numbers ε1,2 from equation

(4.1) could be mitigated by setting the parameter φ = 2.

The choice of φ was based on the observation that c ≈ 2.0 (i.e. φ ≈ 4.0) in the standard PSO

algorithm, and because ε1,2 are uniform in [0, 1], the expectation value of φε1,2 is 2.0. Furthermore, by

setting w = 0.5, the weighting of the previous velocity term can be implemented in hardware by a right

shift operation.

Whilst optimal efficiency is desirable for hardware implementations, this issue does not concern us

to the same degree in the following research into PSO-DR – it is, in fact, one aim herein to study the

algorithm for arbitrary parameter values.

Although equation 4.4 contains a random element η in the recombinant position, the acceleration

parameters φ
2 for both terms are constant. This means that while SPSO depends upon multiplicative

stochasticity in its velocity updates, PSO-DR has additive stochasticity [129, 131]. This has two ramifi-

cations: first, a stability condition can be computed based on the theory of second order, fixed parameter,

difference equations and second, due to the removal of multiplicative stochasticity, recombinant PSO is

predicted not to exhibit the particle velocity bursts seen in the baseline algorithm.

The stability condition is:


|w| < 1

0 < φ < 2(1 + w)
(4.5)

Details of the determination of this condition can be found in [129] and [131], as well as the chap-

ter 5 of this work, along with a thorough examination of the statistical properties of PSO-DR.

4.3 Simplifying Recombinant PSO

While PSO-DR already involves a simplification to the standard algorithm by means of the removal of

multiplicative stochasticity, further potential simplifications are apparent. The technique of “sweeping”

through a multi-dimensional parameter space to find optimal combinations was originally applied to the

standard PSO in a prior work focused on deriving a simpler form of that algorithm[76]. While the simpli-

fied form of the algorithm detailed in that publication showed promising performance improvements on

some types of problems, across the board it could not match the canonical algorithm, and was developed

mainly to allow for experimentation with a new approach to statistical analysis. That work became a

precursor to a robust method of analyzing a non-stochastic PSO algorithm, which is explained and used
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in the next chapter to deconstruct PSO-DR.

4.3.1 PSO-DR Model 2

With this means of evaluating the relative effects of different parameter combinations available for

the standard algorithm, adapting it for use on the discrete recombinant formulation is a simple mat-

ter. Whereas the previous sweeps explored the results of multiple combinations of the χ and φ of the

standard algorithm, here we can use the method to first find an optimal balance between the inertia

weight coefficient w and the φ coefficients.

This first sweep, shown in figure 4.1 for selected functions, reveals that while the optimal region

of combinations is spread across the parameter space, it also intersects the axis for the w term. This

demonstrates that system is able to obtain good performance results even at w = 0.0, i.e. when there

is no previous velocity term in the update equations. This is reminiscent of the very first formulation of

PSO[2], discussed in the previous chapter, which also lacked a previous velocity term – that algorithm,

however, proved to be less effective than desired, leading to the development of the constricted and the

inertia weight formulations.

PSO-DR Model 2 therefore sets w = 0.0, resulting in a simplified two-term velocity update:

vid =
φ

2
(rid − xid) +

φ

2
(pnd − xid) (4.6)

As the velocity and positional update equations are both first-order in this representation, velocity

now serves as a dummy variable, and Model 2 can be represented as a single, velocity-free, first-order

update equation:

xid = xid +
φ

2
(rid − xid) +

φ

2
(pnd − xid) (4.7)

4.3.2 PSO-DR Model 3

While Model 2 now only has a single parameter, φ, in its update equation, the multiple uses of that

parameter allow for another examination of the effects of the possible combinations. Using the same

approach, the two φ terms of PSO-DR Model 2 were next separated into φ1 and φ2, and another sweep

through parameter space was performed. By doing this we can find the optimal set of combinations of the

recombinant component, via its coefficient φ1, and the neighborhood best component, via its coefficient

φ2.

Surprisingly, results again showed that the optimal region intersects an axis, this time for the neigh-

borhood term (pnd − xid) (see figure 4.2 for plots on unimodal and multimodal problems).

The knowledge that the algorithm is stable and able to return good performance even when the φ2

multiplier is set to 0.0, effectively canceling this term and removing the influence of the neighborhood
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Figure 4.1: Optimal regions for combinations of w and φ in PSO-DR Model 1. Each contour line
represents a 10% improvement in performance from worst (red) to best (blue).
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best position, allows a further simplification to the update equation (4.4), down to PSO-DR Model 3:

xid = xid + φ(rid − xid) (4.8)

This is clearly a substantial reduction of the original PSO-DR equation. The “velocity” component

has been reduced from three terms in the originally-proposed PSO-DR Model 1, to two terms in Model

2, to a single social term that takes into account the entire neighborhood of the particle, φ(ri − xi), in

Model 3.

This PSO variant, if shown to be viable and competitive, would raise some interesting questions.

To what extent is velocity a necessary component of PSO – is it a relic of the biological origins of the

algorithm, as has been suggested in the past[79] and is the case for the vmax term? How important is it

that the neighborhood component be drawn from the single best neighbor?

The optimization process of Model 3, hereafter referred to interchangeably as a discrete recombi-

nant swarm (DRS), is driven entirely by the recombinant component; this idea is reminiscent of fully in-

formed particle swarms (FIPS) [81], where the entire neighborhood influences particle behaviour. Here,

rather than every neighbor influencing behaviour in every dimension as in FIPS, a single randomly cho-

sen neighbor fully influences the particle in each dimension. This gives the particle an updated position

that is a combination of the best positions of all of its neighbors throughout all dimensions.

4.4 Performance
The various algorithms were tested over the series of 14 benchmark functions defined in tables 3.1

and 3.2 of the previous chapter. Particles were again initialized using the region scaling technique.

As before, in instances where the global optimum was located at the center of the search space (i.e.

f1, f2, f5 − f7), the function was shifted by a random vector with maximum magnitude of a tenth of the

size of the search space in each dimension for each run to remove any chance of a centrist bias[120].

Problem Optimal φ Problem Optimal φ
Value Value

f1 1.05 f8 1.20

f2 1.10 f9 1.20

f3 1.15 f10 1.10

f4 1.30 f11 1.35

f5 1.20 f12 1.20

f6 1.20 f13 1.35

f7 1.15 f14 1.35

Table 4.1: “Optimal” values for φ using PSO-DR Model 3 with fixed parameters NP = 50 and K = 2

This investigation tested all three models of PSO-DR using both a global (as used in the originally
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Model 1 Model 1 Model 2 Model 2 Model 3 Model 3
Ring Global Ring Global Ring Global

f1 Success 100% 100% 100% 100% 100% 100%
Best 0.0 0.0 0.0 0.0 0.0 0.0
Mean 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Worst 0.0 0.0 0.0 0.0 0.0 0.0
FEvals 61529±124 32565±106 35913±89 16208±72 76748±847 109708±348

f2 Success 0% 100% 100% 100% 0% 0%
Best 5.02E-10 0.0 0.0 0.0 3.61E-5 199.5
Mean 7.5E-9±1.1E-9 0.0±0.0 0.0±0.0 0.0±0.0 3.4E-3±1.2E-3 1025±75
Worst 3.61E-8 0.0 0.0 0.0 5.14E-2 2453
FEvals - 167655±990 528262±3224 119241±1103 - -

f3 Success 0% 0% 0% 78% 0% 0%
Best 2.86E-1 5.07E-13 2.24E-3 0.0 2.72E-5 8.73E-3
Mean 11.12±0.72 0.957±0.243 4.39±1.44 0.877±0.236 8.48±1.18 6.16±0.778
Worst 20.4 3.99 69.61 3.99 33.1 18.96
FEvals - - - 272574±2874 - -

Table 4.2: Results for PSO-DR models on unimodal problems

proposed algorithm) and a local ring topology for selecting the neighborhood operator used in both

the recombinant and the neighborhood components. The parameter settings w = 0.5 and φ = 2 are

explained above, giving a velocity update with the form:

vt+1
id = 0.5vtid + (rid − xtid) + (pnd − xtid) (4.9)

Results shown for PSO-DR Model 2 use the value φ = 1.6, while those for PSO-DR Model 3 use

φ = 1.2. As with determining the “best” number of particles in a swarm, selecting these values was done

through an empirical examination of performance on the benchmark problems for multiple settings with

each algorithm. Table 4.1 shows these best-performing values of φ for Model 3 on each problem – the

mean of these is 1.21, the median and mode both 1.2, hence its selection as the default setting.

For comparison, results were tested for significance against the lbest standard PSO algorithm from

the previous chapter, which operates using the constricted velocity update, equation 2.8, with the rec-

ommended φ = 4.1, χ = 0.72984 and with 50 particles. As explained in section 3.2.3, determining

the best single choice for the number of particles in a swarm is a complex undertaking, with multiple

tradeoffs between performance on various types of landscapes. Because of this, all PSO-DR tests were

also carried out using 50 particles in order to be in line with SPSO. Algorithm performance was again

measured as the minimum error |f (x)− f (x?)| found over the trial where f (x?) is the fitness at the

global optimum for the problem. Results were averaged over 50 independent trials, and are displayed,

with standard error, in tables 4.2 – 4.4. Values less than 10−15 have been rounded to 0.0.

These performance results for all models of PSO-DR compared to those seen for SPSO in tables 3.3

– 3.5 clearly indicate that it is a competitive variant. While the various PSO-DR models using a global

topology are generally inferior to the ring-topology SPSO algorithm, they do compare well across the

entire set of benchmarks against the same when used with a global topology. Those PSO-DR models

using a ring topology perform extremely well against both ring- and global-topology SPSOs. Statisti-

cal tests were performed on these results to determine the significance of the performance differences
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Model 1 Model 1 Model 2 Model 2 Model 3 Model 3
Ring Global Ring Global Ring Global

f4 Success 0% 0% 0% 0% 0% 0%
Best 2105 3199 2961 3553 829 2961
Mean 2645±34 3697±32 3357±21 3994±43 1576±39 3366±18
Worst 3079 4132 3553 4753 2013 3553
FEvals - - - - - -

f5 Success 0% 0% 0% 0% 0% 0%
Best 7.01 58.7 22.88 147.2 2.98 10.94
Mean 23.85±1.57 117.92±5.27 45.02±1.94 263.4±9.3 9.19±0.64 17.69±0.63
Worst 50.21 201.0 73.63 394.0 21.89 27.86
FEvals - - - - - -

f6 Success 100% 8% 2% 0% 100% 100%
Best 0.0 0.0 0.0 19.65 0.0 0.0
Mean 0.0±0.0 18.14±0.76 19.7±0.4 19.8±0.006 0.0±0.0 0.0±0.0
Worst 0.0 20.20 20.38 19.87 0.0 0.0
FEvals 129505±3503 58241±2245 466163±0 - 226790±9485 191363±711

f7 Success 100% 54% 98% 40% 94% 88%
Best 0.0 0.0 0.0 0.0 0.0 0.0
Mean 0.0±0.0 6.7E-3±1.3E-3 1.5E-4±1.5E-4 1.3E-2±2.0E-3 4.4E-4±2.5E-4 8.9E-4±3.4E-4
Worst 0.0 3.68E-2 7.4E-3 6.11E-2 7.4E-3 7.4E-3
FEvals 99433±8130 33196±131 86834±12383 16434±102 70276±704 111643±392

f8 Success 100% 70% 96% 42% 96% 96%
Best 0.0 0.0 0.0 0.0 0.0 0.0
Mean 0.0±0.0 8.1E-2±2.5E-2 1.0E-2±8.5E-3 0.709±0.202 4.2E-3±2.9E-3 4.1E-3±2.9E-3
Worst 0.0 8.32E-1 4.15E-1 8.75 1.04E-1 1.04E-1
FEvals 63281±223 32065±336 42500±382 21576±686 95725±630 168749±2502

f9 Success 100% 86% 100% 36% 98% 86%
Best 0.0 0.0 0.0 0.0 0.0 0.0
Mean 0.0±0.0 6.6E-3±4.0E-3 0.0±0.0 0.552±0.166 2.2E-4±2.2E-4 1.5E-3±5.5E-4
Worst 0.0 1.76E-1 0.0 4.5 1.1E-2 1.1E-2
FEvals 64659±157 31877±122 39363±182 20306±1058 91635±454 169829±2347

Table 4.3: Results for PSO-DR models on complex multimodal problems

between the two algorithms.

Full results of the Bonferroni-adjusted significance tests are displayed in table 4.6. The compar-

isons shown are measured against the ring-topology standard constricted PSO. As expected, the global-

topology PSO-DR models were significantly poorer on many problems (though better for a distinct few),

but the performance of the ring-topology models is much better.

For the original Model 1 formulation using a ring topology, significant improvements over the

canonical PSO are seen for four of the fourteen problems, and significantly poorer performance on one.

The gains are especially beneficial as they come mainly on the highly complex multimodal problem such

as f5 (Rastrigin) while maintaining equal performance on the rest of the multimodals and the majority

of unimodals.

Model 2, when using a ring topology, fared slightly poorer, with significantly improved performance

on two problems and significantly decreased on two. Opposite to Model 1, the two significantly poorer

problems were both highly complex multimodals – while improvements are possible, the standard PSO

algorithm is still highly capable on these types of problems, especially when using an lbest topology. For

the global-topology version of Model 2, performance is generally poor, but looking deeper than that, we

can see that this formulation shows remarkable speed on the trials when it does manage to find a global

optimum. It is the fastest algorithm of all of the PSO-DR models on ten of the eleven problems where it

found the optimum, usually by quite a substantial margin, and is faster by far than the standard PSOs in

every case.

Detailed results for the statistical tests on PSO-DR Model 3 and SPSO, both with ring topologies,
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Model 1 Model 1 Model 2 Model 2 Model 3 Model 3
Ring Global Ring Global Ring Global

f10 Success 94% 100% 94% 100% 98% 98%
Best 0.0 0.0 0.0 0.0 0.0 0.0
Mean 7.2E-16±4.1E-16 0.0±0.0 9.6E-16±5.6E-16 0.0±0.0 1.6E-2±1.6E-2 2.4E-16±2.3E-16
Worst 1.31E-14 0.0 2.11E-14 0.0 0.816 1.13E-14
FEvals 128848±17573 28751±2974 124065±16799 21759±3599 5622±122 41764±9798

f11 Success 100% 98% 90% 40% 98% 36%
Best 0.0 0.0 0.0 0.0 0.0 0.0
Mean 0.0±0.0 1.62±1.62 8.1±3.47 48.6±5.67 1.62±1.62 51.84±5.55
Worst 0.0 81.0 81.0 81.0 81.0 81.0
FEvals 4909±38 3940±24 5063±154 3012±27 6198±134 8288±1531

f12 Success 98% 38% 88% 36% 98% 42%
Best 0.0 0.0 0.0 0.0 0.0 0.0
Mean 0.101±0.101 4.01±0.47 0.703±0.278 4.46±0.49 0.149±0.149 4.31±0.52
Worst 5.05 7.52 7.47 7.52 7.47 7.52
FEvals 95865±9364 7740±1123 40758±6810 4297±32 16839±1415 6771±85

f13 Success 100% 60% 94% 58% 98% 38%
Best 0.0 0.0 0.0 0.0 0.0 0.0
Mean 0.0±0.0 2.52±0.453 0.401±0.227 3.06±0.52 0.134±0.134 4.2±0.475
Worst 0.0 7.65 6.68 8.57 6.68 7.65
FEvals 28886±3560 24769±18169 36830±11070 4243±23 31861±2111 16100±9307

f14 Success 100% 74% 98% 46% 100% 48%
Best 0.0 0.0 0.0 0.0 0.0 0.0
Mean 0.0±0.0 1.82±0.44 0.134±0.134 3.85±0.514 0.0±0.0 3.43±0.482
Worst 0.0 8.11 6.7 8.11 0.0 8.11
FEvals 26915±2819 8212±1058 24356±2913 4326±29 25119±1795 31282±19768

Table 4.4: Results for PSO-DR models on simple multimodal problems

M1 Ring M1 Global M2 Ring M2 Global M3 Ring M3 Global

f1 * * * * * *
f2 + + + + * –
f3 – + * + – –
f4 + – – – + –
f5 + + + – + +
f6 + – – – + +
f7 * – * – * *
f8 * – * – * *
f9 * * * – * –
f10 * * * * * *
f11 * * * – * –
f12 * – * – * –
f13 * – * – * –
f14 * * * – * –

Table 4.5: Significance of results for PSO-DR models vs ring-topology SPSO where + = better, * = equiv-
alent, – = worse

are shown in table 4.5 and confirm that performance is significantly improved on 3 of the 14 tested

functions (f4-f6), equivalent for 10 functions, and significantly worse for 1 function (f3) for PSO-DR

Model 3 vs SPSO with ring topology. This is nearly as good as Model 1, and even more impressive given

the replacement of multiple integral components of the algorithm with a single recombinant operator.

Given the superior performance of Model 3 combined with its simplified nature, closer examination of

its performance and behaviour is warranted. From this point any references to either the SPSO or the

PSO-DR Model 3 algorithms will be speaking of the ring-topology construction of the swarm.

Due to the high number of function evaluations that were performed to obtain these results relative

to previous work (where only 30k-60k function evaluations might be performed), selected convergence

plots are shown in figure 4.3. These show that SPSO obtains superior results at the very start of the

optimization process, up to approximately 5000 function evaluations across all functions (1000–3000 in
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Func p-value Inverse rank α ′ Significant
f4 < 2.2E-16 13 0.003846 Yes

f5 < 2.2E-16 12 0.004167 Yes

f6 < 2.2E-16 11 0.005 Yes

f3 4.335E-05 10 0.004545 Yes

f2 0.007728 9 0.005556 No

f14 0.02406 8 0.00625 No

f13 0.05285 7 0.007143 No

f12 0.05922 6 0.008333 No

f8 0.1594 5 0.01 No

f7 0.3129 4 0.0125 No

f9 0.3222 3 0.016667 No

f10 0.3222 2 0.025 No

f11 0.3222 1 0.05 No

f1 = - - No

Table 4.6: Detailed significance findings for PSO-DR Model 3 vs ring-topology SPSO

the two displayed). After this point, PSO-DR Model 3 surpasses the standard algorithm in performance,

and maintains this advantage to the end of the trials on six of the fourteen tested problems (f4−f6, f12−

f14). On problems for which both algorithms were able to attain error levels of 0.0 in at least one run

(f1, f6 − f14), the point at which this occurs, i.e. when SPSO “catches up” to PSO-DR Model 3, can

be taken from the number of function evaluations required in successful runs. For example, on f7 both

algorithms were able to find the global optimum on numerous trials, within an average of approximately

125k function evaluations for SPSO, and an average of approximately 70k evaluations for PSO-DR

Model 3. Across these 10 problems, PSO-DR Model 3 on average found the global optimum faster than

SPSO in 8 cases, 6 of these significant.

Finally, for the problems on which the SPSO outperformed PSO-DR Model 3, the same early

performance is seen with PSO-DR Model 3 surpassing SPSO in performance early in the optimization

process; in these cases, SPSO eventually repasses the other algorithm before the end of the 600k function

evaluations.

A potential explanation for this behaviour lies in the diversity of the swarms at this point in the

optimization process. Figure 4.4 shows the mean Euclidean distance between particles for the corre-

sponding convergence plots of figure 4.3. It should be noted that uniform initialization was used in

the trials used to generate these plots; relative performance between the algorithms was unaffected, and

initializing particle positions uniformly throughout the search space removes an unrelated phenomenon

in subspace initialization wherein the swarm expands greatly beyond the relatively small initialization

region at the start of the optimization process to explore the search space. Expansion is common in the
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Figure 4.3: Convergence plots for SPSO and PSO-DR Model 3 early in the optimization process

first few iterations using uniform initialization as well, but this is inherent to the swarm behaviour and

influenced only by the topography of the problems landscape and the size of the search space.

As can be seen in the plots of figure 4.4, neither swarm type begins converging immediately fol-

lowing initialization but rather maintain their diversity or expand slightly. On a comparative basis, the

standard PSO swarm expands substantially more than the PSO-DR Model 3 swarm; for example figure

4.4c shows that after the first approximately 100 function evaluations the mean real-valued distance be-

tween particles in the standard PSO swarm increases from 23 to 31.5 on a search space of size 10.2410,

while the PSO-DR swarm diversity increases only from 23 to 24.5. Similar disparities were observed for

all other tested problems.

It is reasonable to gather from these results that the higher swarm diversity for the standard PSO

algorithm early in the optimization process demonstrates a wider spread of particle dispersion, and hence

an expanded search for the basin of attraction of global or local optima. PSO-DR Model 3 expands very

little early in the optimization process, suggesting that its first phase of exploration is shorter than that of

the standard algorithm.

4.4.1 Dip Statistics

The modality of the distribution of the best-found positions of each particle for the various PSO-DR

models is generally comparable to that of the standard PSO, with a few exceptions. In cases where

the swarm settles on multiple local optima with equal fitness ratings, the same behaviour arises, with

multiple subswarms forming and leading to permanent multimodality in the distribution, represented by

a dip statistic value that is higher than the threshold defined for the size of the swarm. As the same

benchmark was used for both the empirical tests in the previous chapter and the ones presented here, this

is seen on the same problems – like SPSO, once a PSO-DR particle has set a personal best position, the

only way for this to be changed is through discovery of an improved optimum. If all other particles are
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Figure 4.4: Diversity plots for SPSO and PSO-DR Model 3 early in the optimization process
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converged to equal or inferior optima, the swarm will remain permanently divided. This is the case even

with Model 3; despite its update equation lacking the personal best term, it uses those of its neighbors,

which obey the same rules.

Plots of the dip statistic values over the same problems demonstrated in figures 3.5 and 3.6 in

chapter 3 provide a comparison of the behaviour of the algorithms. Ring topology results are shown in

figures 4.6 and 4.7 for all three models of PSO-DR – results for the global topologies were obtained, but

are shown only for Model 1 due to the extreme similarity in appearance between all three models.

For problems with multiple equal local minima, exemplified in the displayed plots by f5, average

behaviour of all three over 50 trials results in a multimodal swarm distribution apart from in the case

of the ring-topology Model 1. The ring-topology PSO-DR Model 3 swarm especially becomes progres-

sively more and more multimodal as subswarms converge down to multiple distinct optima. On f12, with

its low dimensionality and multiple distinct optima, behaviour again mimics that of SPSO, with all three

models of swarms quickly dividing into a multimodal distribution before eventually settling down to a

single optimum after a very large number of function evaluations. In this case, the globally-connected

swarms never attained multimodality, instead converging to a single optimum quickly and reliably.

The notable difference in behaviour to SPSO comes on problems f1–f3, those with a single opti-

mum. This is demonstrated using f1 in figure 4.6a. Unlike SPSO swarms, which quickly attain multi-

modality and nearly as quickly again converge back down to unimodality, PSO-DR swarms maintain a
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unimodal distribution throughout the entire optimization, apart from an exceedingly brief period where

Model 3 barely crests into multimodality near the beginning. This helps to explain the nearly universally

faster performance of the PSO-DR algorithms on these problems – these swarms use almost no function

evaluations on dividing into subswarms to exploit multiple points, instead converging to the single global

optimum from the very start of the optimization.

4.5 Velocity Bursts

It has been shown that a PSO particle at stagnation (i.e. when no improvements to personal bests are

occurring and the particles have effectively decoupled) exhibits bursts of outliers[88] – temporary ex-

cursions of the particle to large distances away from the attractors. A burst will typically grow to a

maximum and then return through a number of damped oscillations to the region of the attractors. The

origin of bursts, and of the associated fattening of the tails of the positional distribution at stagnation,

can be traced to the second order stochastic difference equation:

x(t+ 1) + a(t)x(t) + bx(t− 1) = c(t) (4.10)

which is equivalent to SPSO with the identification a(t) = c(ε1 + ε2) − w − 1, b = w and

c(t) = c(ε1p1 + ε2p2) for fixed attractors p1,2. Since max(|a|) > 0, amplification of x(t) can occur

through repeated multiplication of x(t) by a despite the second order reduction by multiplication by the

constant b. Interestingly, the distribution tail of |x|, by virtue of the bursts that become increasingly less

probable for increasing size, is fattened compared to an exponential fall-off as provided by, for example,

a Gaussian. A theoretical justification of these power laws and some empirical tests can be found in

[129].

PSO bursts differ from the random outliers generated by PSO models which replace velocity by

sampling from a distribution with fat tails such as a Levy distribution[80]. In contrast to the outliers of

these “bare bones” formulations[79], the outliers from bursts occur in sequence, and entirely in a single

dimension. Bursting will therefore produce periods of rectilinear motion where the particle will have a

large velocity parallel to a coordinate axis.

Furthermore, large bursts may take the particle outside the search space. Although this will not

incur any penalty in lost function evaluations if particles that exit the feasible bounds of the problem are

not evaluated, as previously defined, they are not contributing to the search whilst in this outer space.

PSO-DR, which is predicted not to have bursts[129], therefore provides a salient comparison.

4.5.1 Bursting under PSO-DR

In order to investigate bursting behaviour in PSO-DR and SPSO an empirical measure was devised. This

bursting measure was implemented to highlight when a particle had a velocity in a single dimension that
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was considerably higher than the velocities in all other dimensions. Bursting patterns of behaviour were

detected by reporting every function evaluation where particle velocity in a single dimension was a set

amount λ times higher than the next-highest dimensional velocity.

Bursting behaviour is demonstrated in figure 4.8, where the velocity of a single particle in a 10-

dimensional problem is shown. On the plot of the multi-dimensional velocity of the SPSO particle, it

can be seen that velocity in a single dimension increases suddenly and dramatically while remaining

relatively level and low in all other dimensions. This is a prime example of a velocity burst. Velocity for

a PSO-DR Model 3 particle is also shown in figure 4.8, and demonstrates the absence of such bursts.

Examination of these empirical analyses show that PSO-DR lacks any bursting behaviour on the

scale of SPSO while demonstrating equal or superior performance on 13 of the 14 benchmark functions.

Figure 4.5 shows the percentage of particle updates where burst patterns of behaviour were seen for

various values of λ during the performance tests of section 4.4.

Analysis performed on statistics of several functions shows that particle updates involving bursts are

far less effective than more common non-bursting updates. For example, results obtained in the course

of this study showed that for a SPSO algorithm with a ring topology on f5, 20.1% of all particle updates

over 300k function evaluations result in an improvement to the particle’s best found position. When

λ is set to 100, i.e. a burst is registered when a particle is moving in one dimension at least 100× its

velocity in any other dimension, only 1.8% of updates involving these bursts result in an improvement to

the personal best. Even more tellingly, on average 0.9% of all particle updates on this problem improve

the best found position of the entire swarm, while only 0.01% of updates for bursting particles. Even

when the λ burst identifier is set to the relatively low value of 10× the velocity of any other dimension,

particles in this state only update their personal best position in 12.45% of evaluations, still much lower

than the aforementioned 20.1% of all updates.

The results obtained and described here support the findings of an associated theoretical study of

burst behaviour[129], and help to show that by eliminating what seems to be another extraneous feature

of the standard particle swarm - its multiplicative stochasticity - PSO-DR again removes an integral

component of the algorithm that is in fact both unnecessary and potentially detrimental to optimization

functionality. Up to this point it has been suggested in PSO literature that velocity bursts are necessary

to the optimization process for various hypothesized reasons [3, 68, 79, 90] – the theoretical proofs and

empirical demonstrations in [129] and this work indicate that this is not the case.

4.6 Discussion

Simplification of the standard PSO algorithm is an important step toward understanding how and why

it is an effective optimizer. By removing components of the algorithm and seeing how this affects

performance, we are granted insight into what those components contribute to overall particle and swarm
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Figure 4.8: Representative particle velocities for SPSO and PSO-DR on 10D Rastrigin (color used to
differentiate dimensions)

behaviour.

In particular, a very simple particle swarm optimizer is proposed, PSO-DR Model 3:

xid = xid + φ(rid − xid)

which offers competitive performance to standard PSO but removes multiplicative randomness,

inertia, and the personal memory term pi from the position update. The full PSO-DR Model 3 algorithm

is provided in pseudocode for easy replication.

There is still much to be done before questions concerning PSO behaviour can be completely an-

swered, and it is expected that future areas of PSO research will be focused on understanding the basic

algorithm that powers both the standard implementation and its variants. That work is already underway,

most notably in the defining of a method of analysis for the SPSO algorithm[78, 76, 77]. Adapting this

method for use on the various models of PSO-DR is the focus of the next chapter.

In that light, the PSO-DR variant is important not only because of its improved performance on

several benchmark functions, but also because it’s simplified state allows us to examine what happens to

the standard algorithm when pieces are modified or removed. Based on the results presented here and

in [129], it can be argued that large bursts are not generally beneficial or integral to PSO performance,

and may possibly be detrimental. Although the presence of particle outliers is demonstrably important

for swarm optimization (as shown in an analysis of the bare bones variant[79]), bursts, which are se-

quences of extreme particle positions, occurring along an axis and reaching outside the search space,

remain a feature of velocity-based swarms. This work, which compares standard PSO to a burst-free but

comparable optimizer suggests that such bursts are disadvantageous in general.

Further, the replacement of the direct personal influence operator pi from SPSO with the recom-
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The PSO-DR Model 3 (PSO-DRS) Algorithm
initialize constant φ = 1.2
initialize swarm best found fitness fg = maximum possible fitness
for each particle i where i = 1..50 do

if performance testing then
initialize random particle position vector −→xi within the search space using region scaling

else
initialize random particle position vector −→xi within the search space

initialize particle best found position vector −→pi = −→xi
set particle left neighbor nli = (i− 1) unless i = 1, in which case nli = 50
set particle right neighbor nri = (i+ 1) mod 50
calculate particle current fitness fi = f(−→xi)
initialize particle best fitness fpi = fi
if particle fitness fi < fg then

set swarm best found fitness fg = fi
set swarm best found position −→pg = −→xi

for each step prior to termination criteria do
for each particle i where i = 1..50 do

initialize random vector −→η with independent elements either 0 or 1
initialize discrete vector −→ri = −→η

−→
nli + (1−−→η )−→nri

update particle position −→xi = −→xi + φ (−→ri −−→xi)
calculate particle current fitness fi = f(−→xi)
if particle current fitness fi < fpi then

set particle best found fitness fpi = fi
if particle current fitness fi < fg then

set swarm best found fitness sf = fi
set swarm best found position −→pg = −→xi

best found fitness for the optimization is fg
best found position for the optimization is −→pg

binant term ri, derived from the particle neighborhood, in PSO-DR strengthens assertions that swarm

algorithms is largely reliant on social interaction as opposed to personal “cognitive” experience[61, 87].

This is further supported by the effectiveness of PSO-DR Model 3, which lacks a cognitive term, and in

fact any reference to a particle’s personal best position, in the update equations altogether. The social be-

haviour occurring inside of a swarm is still a wide-open area in the field, and will hopefully constitute a

great deal of the future research devoted to the development of a better understanding of this deceptively

simple optimizer.

4.7 Conclusions
This chapter has focused on the development of a simplified form of the standard PSO algorithm defined

previously. This new formulation is based on the introduction of a recombinant term into the update

equations, taking the place of the personal best found position of a particle, also known as the cognitive

term. This recombinant term is established as a positional vector formed from a combination of the best

found positions of the particle’s neighbors.

Simplifications to the original PSO-DR algorithm, referred to here as Model 1, were applied after

empirical results indicated that the w term was extraneous for the attainment of performance equivalent



88 Chapter 4. A Simplified, Recombinant PSO Algorithm

to that of Model 1 given appropriate adjustments to the φ parameter. Further simplifications to this

Model 2 formulation were applied when it was found that the entire neighborhood best term, aka the

social term, was extraneous as well.

The new formulation of the algorithm, referred to as PSO-DR Model 3, was found to return per-

formance results equivalent or superior to the standard PSO defined in the previous chapter despite the

removal of large parts of the update equations. This simplified form also showed similar behaviour in

terms of particle interaction and swarm movement. Further, the removal of the multiplicative stochastic-

ity of the standard PSO algorithm with PSO-DR was shown to correspond to a removal of the velocity

bursting behaviour seen there.

The removal of multiplicative stochasticity also simplifies the process of applying a mathematical

analysis of the PSO-DR algorithm, allowing for an investigation of the sampling distribution. This

investigation is the focus of the next chapter.



Chapter 5

Mathematical Analysis of PSO-DR

5.1 Introduction

A mathematical analysis of the dynamics of the PSO-DR algorithm provides a clear picture of its sam-

pling distribution as well as a proof of convergence for appropriate parameter settings. Such analyses

have been performed on numerous characteristics of the traditional PSO algorithm equivalent to that

defined here in chapter 3, and are detailed in section 2.6.

Of these, most have required a significant number of assumptions to be made about the algorithm

in order to simplify it to a more easily analysable state. The most common of these are the removal of

stochasticity from the update equations, and the assumption of stagnation, i.e. that a particle is unable to

update the personal-best or swarm-best positions and is in a constant state of searching for an improved

point in the fitness landscape. While the latter of these, the assumption of stagnation, is necessary

to provide a static range for the sampling distribution, the removal of stochasticity is a fundamental,

unrepresentative alteration to the behaviour of updating particles.

With the publication of his exact analysis of the sampling distribution of PSO, Poli removed all

assumptions beyond stagnation[77, 78], allowing for exact determination of the characteristics of the

sampling distribution in the presence of stochasticity. Given the general applicability of Poli’s means of

analysis, this chapter provides a statistical analysis of the various forms of PSO-DR using an adapted

form of his procedure. Like Poli’s method, the approach taken here assumes only stagnation in a particle.

In performing this analysis, we are able to move beyond the information granted by empirical study

about whether the PSO-DR algorithms are able to effectively optimize non-linear problems, and look at

how this optimization is carried out. More practically, this information grants insight into the range of

appropriate parameter settings required for the algorithm that allow it to operate in a desired fashion. The

previous chapter empirically demonstrated that the PSO-DR algorithms were able to optimize to at least

some extent given a φ setting between approximately 0.0 and 2.0 – an exact analysis of the sampling

distribution will allow us to predict with certainty how they will behave for any setting of this parameter.
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Going beyond a greater understanding of the behaviour of the PSO-DR algorithms, by proving the

convergence ability of the PSO-DR algorithms, we can determine the moments of the sampling distri-

bution under convergence conditions. These moments, the first two (corresponding to the mean and the

standard deviation) of which are calculated in this chapter, allow us to “get around” the limitations im-

posed by No Free Lunch theorem (see section 2.1.3) by matching the algorithm to problems for which

we know that this sampling distribution is well-suited. If the sampling distributions for all conceivable

optimization algorithms were known, the best approach for solving any conceivable problem could be

obtained. By providing the sampling distribution of PSO-DR, we contribute to the sum of this knowl-

edge.

5.2 Generalization of PSO-DR
After removing the dimensional and individual subscripts and adding time-series markers t, the three

forms of the discrete recombinant swarm discussed in the previous chapter are given below.

First, the originally proposed discrete recombinant PSO algorithm[82], in its local, i.e. 2-neighbor

formulation appears as:

DRM1 : xt+1 = xt + w(xt − xt−1) +
φ

2
(r − xt) +

φ

2
(p1 − xt) (5.1)

where p1 is the best position found by any neighbor. Note that the velocity term has been combined

into the positional update here.

The velocity-less refinement of the original PSO-DR algorithm, Model 2, appears as:

DRM2 : xt+1 = xt +
φ

2
(r − xt) +

φ

2
(p1 − xt) (5.2)

Finally, the form obtained when the neighborhood term was determined to be unnecessary for con-

vergence, Model 3, is:

DRM3 : xt+1 = xt + φ(r − xt) (5.3)

aka PSO-DRS. For each of these equations:

r = ηp1 + (1 − η)p2 (5.4)

where η is either 0 or 1 with equal probability, and p1 and p2 represent the best positions of the

particle’s two neighbors in a ring topology. Unlike the standard PSO formulation, PSO-DR involves

only additive rather than multiplicative stochasticity due to this recombinant term[129].

Poli’s technique uses the expectation operator to define a fixed point of the SPSO update equation



5.2. Generalization of PSO-DR 91

to be a combination of the best position of the particle and the best neighborhood position , i.e. p =

c1y+c2ŷ
c1+c2

[77]. A fixed point can similarly be obtained for the PSO-DR equations that is entirely dependent

on the recombinant term r. To do this, the recombinant and the best-neighbor components of the first

two PSO-DR equations (5.1 and 5.2) can be combined:

pr =
φ

2
(r − xt) +

φ

2
(p1 − xt)

=
φ

2
ηp1 +

φ

2
(1 − η)p2 +

φ

2
p1 − φxt

=
φ

2
ηp1 +

φ

2
p1 −

φ

2
ηp2 +

φ

2
p2 − φxt

= φ

(
ηp1 + p1 − ηp2 + p2

2
− xt

)
= φ

(
(η + 1)p1 + (1 − η)p2

2
− xt

)
(5.5)

We can extract the fixed-point recombinant term from this equation, namely:

κ1,2 =
(η + 1)p1 + (1 − η)p2

2
(5.6)

Obviously the recombinant component of PSO-DR Model 3 (φ(r−xt)) fits this form, with simply:

κ3 = ηp1 + (1− η)p2 (5.7)

per equation 5.4.

With this generalized recombinant term κ in place, we can now describe any of the PSO-DR for-

mulations using a single equation:

xt+1 = xt + w(xt − xt−1) + φ(κ − xt) (5.8)

where w = 0.0 for Model 2 and Model 3.

As per Blackwell[129], we can rewrite equation 5.8 as a stochastic second order difference equation

of the standard form:

xt+1 + atxt + bxt−1 = ct (5.9)
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with: 
at = −(1 + w − φ)

b = w

ct = φκ

(5.10)

In PSO-DR Model 1 w = 0.5 per Peña[82], while PSO-DR Models 2 and 3 simply set w = 0

to remove the velocity component. Given that E[η] = 1
2 , applying the expectation operator to the

recombinant term for PSO-DR Models 1 and 2 (eq 5.6) gives:

E[κ1,2] =
(1 + E[η])p1 + (1 − E[η])p2

2

=
3
2p1 + 1

2p2

2

=
3p1 + p2

4
(5.11)

and for the PSO-DR Model 3 term (5.6):

E[κ3] = E[η]p1 + (1 − E[η])p2

=
p1 + p2

2
(5.12)

From these two values, we can see that the fixed point for the first two models is on the line connecting

the two neighborhood particles – 25% closer to the best neighborhood position p1 for Models 1 and

2, and evenly spaced between the two positions for Model 3. This is apparent from a comparison of

the algorithms, where the best neighbor position appears with full “weighting” in the social component

φ
2 (p1 − xt), and half in the cognitive component φ2 (r − xt) for Models 1 and 2, while Model 3 discards

the social component, leaving only the half-weighted cognitive component.

For use in determining the dynamics of higher moments in the next section, we calculate the ex-

pected values for κ2 for the Models 1 and 2 formulation:
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κ2
1,2 =

(
(1 + η)p1 + (1 − η)p2

2

)2

κ2
1,2 =

(ηp1 − ηp2 + p1 + p2)2

4

=
p2

1 (η2 + 2 η + 1) + p2
2 (η2 − 2 η + 1) + p1 p2 (2 − 2 η2)

4
(5.13)

Applying the expectation operator, we obtain:

E[κ2
1,2] =

p2
1 (E[η2] + 2 E[η] + 1) + p2

2 (E[η2] − 2 E[η] + 1) + p1 p2 (2 − 2 E[η2])
4

=
5p21
2 + p22

2 + p1p2

4

=
5p2

1 + p2
2 + 2 p1 p2

8
(5.14)

The Model 3 formulation differs only slightly:

κ2
3 = (ηp1 + (1 − η)p2)2

= η2p2
1 + η2p2

2 − 2η2p1p2 + 2ηp1p2 − 2ηp2
2 + p2

2

= p2
1 η

2 + p2
2 (η2 − 2 η + 1) (5.15)

E[κ2
3] = p2

1 E[η2] + p2
2 (E[η2] − 2 E[η] + 1)

=
p2

1 + p2
2

2
(5.16)

5.3 Dynamics of the PSO-DR Sampling Distribution

With our generalized form of the PSO-DR update equations, we can now compute the dynamics of the

first two moments of the sampling distribution. These correspond to the mean and the variance of the

distribution. As per Poli’s definition of this method[76, 77, 78], we are assuming stagnation, i.e. that the

particles under analysis are in search of an improved found best position.
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5.3.1 First Moment

By rewriting equation 5.8 to combine the constant terms, we obtain:

xt+1 = xt + w(xt − xt−1) + φ (κ − xt)

= xt + wxt − wxt−1 + φ κ − φxt

= γ xt − w xt−1 + φ κ (5.17)

where γ = (1 + w − φ). This allows for a simple application of the expectation operator:

E[xt+1] = γE[xt]− wE[xt−1] + φE[κ] (5.18)

We can find the fixed point for this equation by substituting p for E[xt] and some relatively simple

algebra:

p = γ p − w p + φ E[κ]

= p + w p − φ p − w p + φ E[κ]

φ p = φ E[κ]

p = E[κ] (5.19)

From this we can see that the recombination operator determines the point of convergence of the algo-

rithm. As PSO-DR Models 1 and 2 use the same recombination operator, we know that either algorithm

will converge to the same point, assuming stability. PSO-DR Model 3, on the other hand, will converge

to a separate point, again assuming stability.

The stability of equation 5.18 can be found by reformulating this second-order equation into a vector

first-order system of equations zt = [xt+1 xt]T . This would take the form:

zt+1 = M1zt + b (5.20)

where the matrix M1 is:

M1 =

 γ −w

1 0

 (5.21)
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and the forcing vector:

b1 =

 E[κ]φ

0

 (5.22)

Now we are able to determine the stability of the system at the order under investigation (in this case

first-order) using the values of φ for which all of the eigenvalues of M1 are less than 1, i.e.:

Λm = maxi|λi| < 1 (5.23)

The eigenvalues of M1 are:

λ1,2 =
γ ±

√
(γ)2 − 4w
2

=
1 + w − φ ±

√
(1 + w − φ)2 − 4w
2

(5.24)

(5.25)

As the eigenvalues of M1 do not have a dependence on κ, we can conclude that while the point

of convergence depends on the choice of recombinant operator, order-1 stability is independent of this

term. For the mean of E[xt] to converge to a fixed point, the magnitude of the largest eigenvalue must be

less than 1. The region inside of the lines, which correspond to stability conditions, shown in figure 5.1

shows the combinations of the w and φ terms for which the eigenvalues are less than 1. We refer to this

as the stability region.

It is notable that the regions of best performance for PSO-DR seen in figure 4.1 of the previous

chapter match up well to this analytically derived stability region. This empirical evidence supports the

indication that the parameter settings within the stability region allow the particle to converge to and

hence search the area around its best found positions for improvements.

As the algorithms for PSO-DR Models 2 and 3 remove the velocity term w, i.e. set w = 0, it can be

seen from the above generalized stability conditions that the region of stability for these two algorithms

is defined simply by 0 < φ < 2. This too is confirmed in figure 5.1.

5.3.2 Second Moment

While the region of order-1 stability guides us in choosing values forw and φ that guarantee convergence

of the mean of the individual particle under stagnation, this does not guarantee that the particle will

approach and “settle” on that single point, but only that the point will be the mean of the sampling
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Figure 5.1: Region of order-1 stability for PSO-DR algorithms

distribution – i.e. the particle’s motion will be centred around it. For this approach and the associated

search of the immediate area of the mean we need parameter choices that guarantee convergence of the

variance as well, which is described by the second moment, i.e. order-2 stability.

We can determine the dynamics of the second moment via E[x2
t+1], E[xt+1xt], and StdDev[xt].

To begin, we obtain x2
t+1:

x2
t+1 = (γ xt − w xt−1 + φ κ)2

= γ2 x2
t

+ 2 γ φ κ xt

− 2 γ w xt xt−1

+ w2 x2
t−1

− 2 w φ κ xt−1

+ φ2 κ2 (5.26)

Applying the expectation operator to both sides, we obtain:
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E[x2
t+1] = E[x2

t ] γ
2

+ E[xt] E[κ] 2 γ φ

− E[xt xt−1] 2 γ w

+ E[x2
t−1] w2

− E[xt−1] E[κ] 2 w φ

+ E[κ2] φ2 (5.27)

Next we compute xt+1xt by multiplying both sides of xt+1 by xt:

xt+1xt = x2
t (γ) − xt xt−1 w + xt κ φ (5.28)

and thereby:

E[xt+1xt] = E[x2
t ] (γ) − E[xt xt−1] w + E[xt] E[κ] φ (5.29)

As Poli found for a PSO algorithm equivalent to the standard defined in chapter 3, we can see that both

of these equations depend on xt, which tells us that neither can attain a fixed point unless xt has done

so. In other words, the variance of the system cannot converge unless the mean has done so as well. The

swarm as a whole cannot converge to a fixed point unless an individual particle has done so.

Once derived, equations 5.18, 5.27, and 5.29 can be put into matrices as above, in an extended first

order system to facilitate an analysis of the stability of the system where:

z(t)2 =



E[xt]

E[xt−1]

E[x2
t ]

E[x2
t−1]

E[xtxt−1]


(5.30)

the matrix:
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M2 =



γ −w 0 0 0

1 0 0 0 0

E[κ]2γφ −E[κ]2wφ γ2 w2 −2γw

0 0 1 0 0

E[κ]φ 0 γ 0 −w


(5.31)

and the forcing vector:

b2 =



E[κ]φ

0

E[κ2]φ2

0

0


(5.32)

The eigenvalues ofM2 are shown in the system of equations 5.33. As with the order-1 PSO-DRS system

stability, as well as the order-1 SPSO system Poli derived[77], the lack of dependency on the positional

value x of the update equation indicates that the second-order stability of PSO-DR is wholly indepen-

dent of the physical location or distribution of the particles comprising the swarm and is determined

completely by the values of w and φ.


λ1 = w

λ2,3 = γ±
√

(w−φ)2−2φ−2w+1

2

λ4,5 = 1−2φ+(φ−w)2± γ
√

1−2(φ+w)+(φ−w)2

2

(5.33)

As above, we determine the stability of the system using the values of φ and w for which all of the eigen-

values in the system of equation 5.33 are less than 1. Empirical methods were again used to determine

this region – results are shown in figure 5.2. Comparison of the regions of stability for the order-1 and

the order-2 systems reveals that, unlike for the standard PSO, the two coincide perfectly.

Deriving the fixed points of the order-2 equations E[x2
t ] and E[xt+1xt] can be done in the same

way as above with the order-1 equation E[xt]. As we know that E[xt] converges to the fixed point equal

to the recombinant term p = E[κ], we can substitute this into the equations E[x2
t ], replacing E[xt] and

E[xt−1], which gives us:
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Figure 5.2: Region of order-2 stability for PSO-DR algorithms

E[x2
t+1] = E[x2

t ] γ
2

− E[xt xt−1] 2 γ w

+ E[x2
t−1] w2

+ E[κ]2 (2 γ φ − 2 w φ)

+ E[κ2] φ2 (5.34)

and for E[xt+1xt]:

E[xt+1xt] = E[x2
t ] γ − E[xt xt−1] w + E[xt] E[κ] φ (5.35)

We can now determine the fixed points for the three order-2 equations by substituting in these points

px2 and pxx:
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px2 = px2 γ2 + px2 w2 − pxx 2 γ w + E[κ]2(2 γ φ − 2 w φ) + E[κ2]φ2 (5.36)

pxx = px2
γ

1 + w
+ E[κ]2

φ

1 + w
(5.37)

Note that the solved equation for pxx is equivalent to the one found by Poli[77] for SPSO. Substituting

this into the equation for px2 and a bit of algebra, we obtain the fixed point:

px2 = px2 γ2 + px2 w2

−
(
px2

γ

1 + w
+ E[κ]2

φ

1 + w

)
2 γ w

+ E[κ]2(2 γ φ − 2 w φ) + E[κ2]φ2

= px2

(
γ2 + w2 − γ

1 + w

)
+ E[κ]2

(
2 γ φ − 2 w φ − φ

1 + w

)
+ E[κ2]φ2

=
E[κ]2 2 φ (γ − w − w2) + E[κ2] φ2 (1 + w)

1 + w − γ2 + γ2 w − w2 − w3

=
E[κ]2 (2 − 2 φ − 2 w2) + E[κ2] (φ + w φ)

2 − 2 w2 + w φ − φ
(5.38)

which can then be substituted back into pxx to obtain the other fixed point:
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pxx =
(
E[κ]2 (2 − 2 φ − 2 w2) + E[κ2] (φ + w φ)

2 − 2 w2 + w φ − φ

)
γ

1 + w
+ E[κ]2

φ

1 + w

=
E[κ]2 γ (2 − 2 φ − 2 w2) + E[κ]2 φ(2 − 2 w2 + w φ − φ) + E[κ2] γ (φ + w φ)

(2 − 2 w2 + w φ − φ) (1 + w)

=
E[κ]2(φ2 + φ2w − 2φ− 2wφ+ 2w − 2w2 − 2w3 + 2)

(2 − 2 w2 + w φ − φ) (1 + w)

+
E[κ2](−φ2 − wφ2 + φ+ 2wφ+ w2φ)

(2 − 2 w2 + w φ − φ) (1 + w)

(5.39)

=
E[κ]2(φ2 − 2 φ − 2 w2 + 2) + E[κ2](−φ2 + w φ + φ)

2 − 2 w2 + w φ − φ
(5.40)

Finally, we can determine the standard deviation of the system via the well-known definition

StdDev[xt] =
√
E[x2

t ]− E[xt]2:

psd =
√
px2 − p2

x

=

√
E[κ]2 (2 − 2 φ − 2 w2) + E[κ2] (φ + w φ)

2 − 2 w2 + w φ − φ
− E[κ]2

=

√
E[κ2] (φ + w φ) + E[κ]2 (2 − 2 φ − 2 w2) − E[κ]2 (2 − 2 w2 + w φ − φ)

2 − 2 w2 + w φ − φ

=

√
E[κ2] (φ + w φ) − E[κ]2 (φ+ w φ)

2 − 2 w2 + w φ − φ

=

√
(φ + w φ)(E[κ2] − E[κ]2)

2 − 2 w2 + w φ − φ
(5.41)

Like the fixed point for the first moment, xt, we can see that while the stability of the second order

is dependent only on parameter choices for w and φ, the fixed points for all three second moment terms

are also dependent on the choice of recombinant operator. In other words, we can guarantee convergence

through appropriate selection of these two parameters, and we can choose which point will be converged

to through selection of the recombinant term.

5.4 Initial Conditions
To evaluate the initial conditions of the PSO-DR update equations we must bring in knowledge of the

swarm’s initialization properties. Region scaling has been used in previous chapters for empirical op-

timizations, but this technique is used only to ensure that performance is not impacted by the structure
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of the problem landscape – here we will use the more natural random initialization within a symmetric

space [−Ω,Ω]. This gives us E[x0] = 0.

While the PSO-DR Models 2 and 3 updates are first-order equations, Model 1 is second order, like

SPSO. In order to maintain generality we will split equation 5.8 into separate velocity and positional

updates, respectively vt+1 = wvt + φ(κ − xt) where vt = xt − xt−1, and xt+1 = xt + vt+1. The

velocity term is second-order in this formulation, but for Models 2 and 3 it is effectively first-order,

given their parameter setting w = 0. As a particle’s velocity is initialized in the same way as its position,

we can similarly set E[v0] = 0.

As the velocity term is second-order, we need to define the value of E[v1] before we can proceed.

The equations above allow us to find the value:

E[v1] = w E[v0] + φ (E[κ] − E[x0])

= 0 + φ (E[κ] − 0)

= φE[κ] (5.42)

Using the fixed point values for the recombinant term, this gives us the value φ 3p1+p2
4 for Models 1 and

2, and φp1+p2
2 for Model 3. Because x1 = x0 + v1, we know that:

E[x1] = E[x0 + v1]

= E[x0] + E[v1]

= φE[κ] (5.43)

Now that we have initial conditions for the mean of the distribution, we can find the initial conditions

to help us determine the variance. Because of the uniform initialization within [−Ω,Ω] we know that

E[x2
0] = E[v2

0 ] = Ω2

3 . In order to derive E[x2
1] = E[(x0 + v1)2] = E[x2

0 + 2x0v1 + v2
1 ] we will first

need a value for E[x0 v1]. Note that v1 depends on x0, rendering them inseparable for these purposes.
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E[x0 v1] = w E[v0] E[x0] + φ E[x0] (E[κ] − E[x0])

= 0 + φ E[x0] E[κ] − φ E[x0]2

= 0 − φ
Ω2

3

= − φ Ω2

3
(5.44)

which can also be used to determine E[x1x0]:

E[x1x0] = E[(x0 + v1) x0]

= E[x2
0] + E[v1 x0]

=
Ω2

3
− φ

Ω2

3

=
Ω2

3
(1 − φ) (5.45)

Next we will find the value for E[v2
1 ]:

E[v2
1 ] = (w E[v0] + φ (E[κ] − E[x0]))2

= w2E[v2
0 ] + 2wφE[κ]E[v0] − 2wφE[v0]E[x0] + φ2E[κ]2 − 2φ2E[κ]E[x0] + φ2E[x2

0]

= w2 Ω2

3
+ 0 − 0 + φ2 E[κ]2 − 0 + φ2 Ω2

3

= (w2 + φ2)
Ω2

3
+ φ2 E[κ]2 (5.46)

The various conditions we have collected now finally allow us to specify E[x2
1]:

E[x2
1] = E[x2

0 + 2x0v1 + v2
1 ]

= E[x2
0] + 2 E[x0 v1] + E[v2

1 ]

=
Ω2

3
− 2 φ

Ω2

3
+ (w2 + φ2)

Ω2

3
+ φ2 E[κ]2

= (1 − 2φ + w2 + φ2)
Ω2

3
+ φ2 E[κ]2 (5.47)
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5.5 Behaviour of the System

With all of our equations in hand for determining the mean, standard deviation, and fixed points of the

PSO-DR algorithms, demonstrating the behaviour of the systems under various parameter combinations

only requires us to start the simulation using the initial conditions determined above.

Figure 5.3 shows a PSO-DR Model 1 algorithm using Peña’s original parameter settings of w = 0.5

and φ = 2[82]. Panel (a) of the figure shows behaviour when p1 and p2 are at separate points. As

expected, the mean xt converges to the fixed point p, which is nearer to p1. Because the particle is at

stagnation, and p1 and p2 are not equal, the standard deviation converges to a value greater than zero.

The convergence of both the mean and the variance here confirms that the selected parameter settings

are in the region of stability.

Panel (b) of figure 5.3 shows the same algorithm with the same parameter settings, but with p1

and p2 on the same point. In this case, the particle appropriately converges to that same point, and the

standard deviation drops to zero, indicating that the particle has “come to rest” on this point.

Figures 5.4 and 5.5 show the same circumstances for the other two models of PSO-DR. For Model

2 φ = 1.6, and for Model 3 φ = 1.2, as per [132] and the previous chapter. When p1 and p2 are

different, the Model 2 algorithm mean converges to the same point as the Model 1 algorithm, as shown

in section 5.2, closer to p1. The Model 3 algorithm mean converges to the midpoint of the two positions,

again as previously asserted.

As with Model 1, the variance of Models 2 and 3 converges to a non-zero value when p1 and p2

are separate, and to zero when they are equal. From this we know that the default settings for all three

algorithms are within the stable region. The difference among the algorithms is seen in the speed of

convergence - Model 1 is the slowest to settle down, followed by Model 2. The Model 3 algorithm

mean and variance both converge almost immediately under its default parameter settings. All three

algorithms show complex oscillatory convergence to the mean with these settings, as predicted by the

stability conditions in section 5.3.

Monotonic convergence can be seen when the w and φ parameters are appropriately set according

to the corresponding conditions. This behaviour is shown for PSO-DR Models 1 and 2 in figure 5.6.

For PSO-DR Model 1, where p1 and p2 are different, the standard deviation converges to a value lower

than that seen in the oscillatory convergence, due to the decreased parameter values. The particle is

converged, but is still jumping around the mean by a small amount - smaller than that seen above, when

the converged-to standard deviation is at a higher value. As expected, the standard deviation for the

second case, where p1 and p2 are equal, has converged to zero.

Unlike the oscillatory convergence settings, the mean under monotonic convergence conditions

approaches the fixed point entirely from one direction, with no “searching” taking place on the other
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Figure 5.3: Selected plots of oscillatory convergence under PSO-DR Model 1

side. Monotonic convergence can be much faster than oscillatory under appropriate circumstances, as

it basically takes steps toward the point of convergence, never overshooting and having to go back.

Because this comes at the expense of an even exploration of the space about the mean, it is rare to

see an optimization algorithm that relies wholly on this type of behaviour outside of locally-optimizing

hillclimbers.
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Figure 5.4: Selected plots of oscillatory convergence under PSO-DR Model 2

In the same way that parameter settings dictate whether convergence is monotonic or oscillatory,

settings outside of the conditions for convergence can be selected to push the system to monotonic or

oscillatory divergence. Figure 5.7 shows these behaviours under PSO-DR Models 2 and 3. When the

value for φ is below the minimum of the stability range we can see the system diverging monotonically

on one side of the mean, and when φ is greater than the upper bound of stability we see oscillatory
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Figure 5.5: Selected plots of oscillatory convergence under PSO-DR Model 3

divergence. In both these cases the standard deviation increases without any limit as the particle gets

further and further from the mean.
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Figure 5.6: Selected plots of monotonic convergence

5.6 Discussion
As mentioned above, it can be seen by comparing figures 4.1 and 4.2 from the previous chapter with

figures 5.1 and 5.2 that the empirically-determined performance of all three models of PSO-DR is best

when the w and φ parameters fall within the analytically derived stability region. This supports the

reason for deriving these regions – the ability of the swarm to find and exploit the optima of a problem
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Figure 5.7: Selected plots of monotonic and oscillatory divergence

space is tied to the ability of its component particles to converge to a fixed point. When we know what

parameter settings enable this convergence, we can select them accordingly so that we can reasonably

expect optimization of the landscape to take place. Of course, selecting the ideal parameters from within

this region of known stability is another undertaking.

Unlike the SPSO-equivalent algorithm analyzed by Poli, we saw that the regions of stability for
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the mean and the variance of a PSO-DR algorithm are identical, meaning that there is no combination

of w and φ parameters within this region that will not cause the variance to converge along with the

mean. Whether or not this is beneficial to the performance of the algorithm is debatable. The ability to

guarantee the eventual convergence of both the mean and the variance simultaneously potentially offers

better optimization of individual minima than that of a swarm without this ability. While the SPSO

algorithm with default settings sits quite near the edge of its region of order-2 stability stability[77], the

default settings for the PSO-DR algorithms are comfortably within theirs.

This may explain the poor performance of SPSO on highly complex problems with deep, narrow

minima, such as Rastrigin - problems on which the PSO-DR algorithms return much better results.

Taking into account the analysis above, a possible explanation for this is that PSO-DR algorithms are

able to reduce their variance much more quickly than SPSO, avoiding the surrounding local minima of

the landscape, and restricting the area of exploration of the particle under stagnation to the single basin of

attraction much more quickly than SPSO. Perhaps this slower variance convergence of SPSO dooms its

constituent particles to continually find improved minima in basins of attraction outside the one currently

being exploited, making optimization of the individual peaks more difficult.

On the other hand, fast convergence can be a drawback when the swarm has restricted itself to

a single minima and does not possess the means to escape associated with a larger and/or diverging

variance. SPSO’s non-identical order-1 and order-2 stability regions allow for parameter settings that

keep a particle converged to a mean, but allow for a diverging variance, something that is not possible

with a PSO-DR algorithm. To this point there has been no published work exploring the benefits and

drawbacks of these varying capabilities, but a swarm that could both quickly and reliably optimize a

landscape while retaining the ability to escape minima would be very valuable. What is needed is a

framework that allows for the adaptation of the swarm parameters that allows us to adjust the speed of

convergence. This is the focus of the next chapter.

5.7 Conclusions

This chapter offered a statistical analysis of the various formulations of the PSO-DR algorithm using

the method pioneered by Poli for application to standard PSO. Given the multiple models for PSO-DR

defined in the previous chapter, it was necessary as a first step to generalize all of these into a single

representative form. This general form was then further investigated.

The first two moments of the sampling distribution of the generalized PSO-DR particle update

equation were derived using eigenvalue calculations, giving the stability conditions for each moment.

These conditions/regions were found to be identical for the two moments. We determined the fixed

points of the equations associated with these moments, finding that while the stability conditions, in

terms of parameters w and φ, applied to all three models, the fixed points were dependent upon the
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choice of recombinant term. As the recombinant term differs for PSO-DR Model 3 from Models 1 and

2, the fixed point will accordingly differ – specifically, the fixed point of Model 3 lies equidistant from

the positions of both neighbors, while that of Models 1 and 2 lies nearer to the position of the neighbor

with the best fitness. This can be verified by the update equations themselves, in which Models 1 and 2

contain an extra term representing this best found neighborhood position.

Next we determined the initial conditions of the system based on the initialization procedure of

the algorithm. Along with the update equations for each model, these initialization conditions allowed

us to observe the behaviour under various parameter settings. This clearly demonstrated the effects of

these settings on the ability of a particle to converge or diverge, and to do either in a monotonic or an

oscillatory manner.

Finally, it was suggested that while this proof of convergence in stable regions gives us a better

understanding of the behaviour of the system, the algorithm would benefit from a method for selecting

optimal parameters from within these regions.



Chapter 6

An Adaptive PSO-DRS Framework

6.1 Introduction

PSO has been demonstrated in this work and in the broader literature highlighted in Chapter 2 to be an

effective optimization system within its problem domain, and to be strongly competitive against other

optimizers within its field. The algorithm today is included in many standard comparison benchmarks

for new approaches or variations to current methods.

In spite of this popularity and proven effectiveness, there are still many areas where PSO shows

need or potential for improvement. Perhaps the most obvious is one that affects almost all optimization

algorithms - parameter selection. There are nearly always fixed values within the update equations for a

process that can influence performance and behaviour in ways that range from inconsequential to highly

significant. Defining proper values for these parameters constitutes a large part of the effort in obtaining

optimal performance on a given problem.

When manual tuning is used for optimizing the algorithm, tuning these parameters can only be done

through trial-and-error, guesswork (informed or uninformed), or a combination of the two. Even when

these techniques can be used to find optimal, or even ”good” parameter settings for the optimizer in

question, these settings cannot necessarily be used for any problem apart from the one they were tuned

to, or even for any point in the optimization process apart from the one at which they were selected. This

is a particularly difficult aspect of manual tuning, as parameter selection under these circumstances is

practically required to take place prior to the start of the optimizer.

Introducing a system for adapting the parameters to the particular problem and/or current point in

the optimization process avoids the shortcomings of manual tuning, but still requires care and effort to

put into place. Such a system could take parameter settings from standard ”default” ranges, adapting

them over the course of the process to values that provide the best combination of space exploration

and peak exploitation. These values need not eventually settle to fixed constants, but can be continually

adjusted to provide excellent performance throughout the lifetime of the optimizer.
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This chapter proposes several forms that such an adaptive system could take when applied to PSO-

DRS. The system discussed is by no means the only possible form that an adaptive PSO could take, or

necessarily even the best possible form, but functions as an exercise in defining the important points of

adaptation from the algorithm and experimenting with various tuning adjustments to those parameters in

an effort to obtain performance at least equal to that of the fixed-parameter, non-adaptive algorithm.

Much of the research and literature in global optimization is focused on finding variations to estab-

lished algorithms that deliver better performance. This is an important aspect of any such field, and has

been demonstrated in previous chapters. What is often lacking, however, is the examination of new meth-

ods for working with an algorithm in order to facilitate such research. Improved performance is taken as

an extra benefit of the research presented here - the improvements to the algorithm that are sought come

from the removal of the need for either manual parameter tuning or compromising problem-specific op-

timal settings to find general ones that may not be well-suited to various problems the optimizer could

encounter. The definition of such generic methods is an important part of directing future research, and

consolidating the techniques that can be used in finding variations helps to open up new ways of thinking

about making improvements to the currently-practiced standards.

With this in mind, introducing adaptations to the PSO-DRS algorithm can also be beneficial with

respect to allowing for better optimization of problem types on which the fixed-parameter form performs

poorly. To that end, a new class of problems based on the Lennard-Jones potential[133] is used here in

order to demonstrate how reconstituting the parameters of the swarm to the landscape being optimized

can greatly improve performance.

6.2 Adaptable Parameters

There are two types of parameters that are common across almost all forms of the PSO algorithm: swarm

parameters and particle parameters. Swarm parameters are those that are associated with the structure

and behaviour of the swarm as a whole. Particle parameters are those associated with the positional

update equations used by each particle to obtain a new velocity and/or position. These two levels of

parameters are equivalent to the first two defined in Angeline’s review of the field of adaptive evolu-

tionary computation[134], population-level and individual-level parameters. In the same work, Angeline

further defined a third level, component-level, which is concerned with the individual-level parameters

of specific population members – this level of adaptation is possible here by altering parameter values

of single particles separately from other members of the swarm, but for the purposes of this work only

population-level and individual-level adaptations are required.

Both these types of parameters are clear points of adaptation for the optimizer. Adjustments to

particle parameters influence the behaviour of individual particles by way of the various components of

the update equation. Adjustments to swarm parameters on the other hand influence the behaviour of the
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swarm as a whole with an indirect effect on the movement details of particles through their connectivity

and relationships.

As explained above, the issue of choosing appropriate values for any of these parameters is compli-

cated by the fact that a single set of parameter settings can show varying behaviour and/or performance

on different types of problems. Unimodal problems benefit from quick convergence, as there are no local

minima in which the swarm could become trapped. Quick convergence can often be obtained with the

use of small step sizes on the particle level and high levels of connectivity on the swarm level. Multi-

modal problems, on the other hand, require slower convergence and more exploration to reduce the risk

of the entire swarm settling into the inescapable basin of attraction of a suboptimal minima, which is

often found in an optimizer combining large step sizes with a sparsely-connected swarm[90].

6.2.1 Particle Level

In the original formulation of the PSO update equations, there are either one or two fixed values, depend-

ing on implementation[1]. These are the values for the constant multipliers c1 and c2 that are applied to

the random values obtained for weighting the personal best and neighborhood best components. c1 and

c2 are most often set to the same value c.

The two most popular current formulations of PSO, the inertia weight (IW) algorithm[55] and the

constricted algorithm[10], each add an additional fixed value. In the case of the IW equations this is the

multiplier w which is applied to the previous velocity term, while the constricted equations apply the

multiplier χ to the entire update equation. This gives two to three values that must be chosen prior to

beginning the optimization process (although by using the constriction method the value for χ can be

derived from the values of c1 and c2, or vice-versa). Stable ranges and combinations for these values have

been analytically determined[10], but these only demonstrate the values for which oscillatory convergent

behaviour can be obtained, not necessarily optimal ones.

The new form of PSO presented here in chapter 4, PSO-DR Model 3, or PSO-DRS, reduces the

number of required parameters within the update equations down to just one, φ. This multiplier is applied

to the distance between the recombinant point and the current particle position. While the reduced update

equations appear more straightforward with the removal of balanced social and cognitive components,

tuning this single parameter becomes the only means of affecting behaviour on this level and thus finding

an appropriate value is vital for the issue of performance. The stable range that ensures convergence has

been defined in the previous chapter as φ = [0.0..2.0], with the range ensuring oscillatory convergence

as φ = [1.0..2.0], but as before, this only demonstrates values which allow the swarm to converge with

no claims made as to performance.

While these stable regions obtained for both standard PSO (SPSO) and PSO-DRS allow parameter

values to be chosen that will ensure convergence, they do not reveal which of these values will lead
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to superior, or even acceptable optimization performance. It is very possible for a value to be chosen

from within the stable range that leads to poor performance, e.g. in the circumstance where the swarm

converges, but to a very suboptimal point within only a few iterations. Knowing the stable regions for an

algorithm are beneficial from a performance perspective in narrowing the choices for these values, but

finding the actual optimal parameters within these regions is where adaptive processes come into play.

6.2.2 Swarm Level

There are two swarm parameters that are common to all types of PSO:

1. size, and

2. connectivity.

Size represents the number of individual particles in a swarm. The effects of this setting on swarm

behaviour are easily explained, but this is not necessarily the case when it comes to performance. Small

swarms react to new information quickly when using a sequential update process where each particle’s

velocity and position is updated in turn. Given two swarms, the smaller will update every particle once

and at least one particle more than once in the same number of function evaluations that it takes the other

to update all of its composite particles a single time.

For example: new information is introduced to a globally-connected swarm by means of a new

global best. Assuming stagnation of that best position, over sixty function evaluations every particle

in a thirty-particle swarm would take two steps that were informed by this position, while particles in

a twenty-particle swarm would take three. Given the converging nature of the algorithm, overall the

smaller swarm would move more toward the new global best position in that period than the larger one.

Balancing is required for this parameter in order to prevent premature convergence. There can

be no single number of particles that is optimal at each individual point in the optimization, given the

varying need for fast or slow convergence depending on the current state of the swarm. An ‘optimal’

choice for the number of particles required for fast convergence has been proposed based on an analysis

of the relationship between convergence and problem dimensionality[90], but this is determined as the

minimum population size for convergence, without accounting for relative performance. As such, using

this single value in all cases has multiple drawbacks. On a multimodal problem, a swarm consisting of the

minimum number of particles will converge to a potentially local optimum too quickly for new positions

to be found and evaluated. Conversely, a swarm using a value too much larger than this minimum will

still converge to the same position, but may not do so within a reasonable number of function evaluations.

As most performance measures involve either minimizing the number of function evaluations required to

find a minimum or finding the best possible minimum within a limited number of evaluations, finding an

acceptable compromise between swarm size and performance is an important part of the tuning process.
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Connectivity describes the communication topology between particles. While specific topologies

are often referred to in colloquial terms (ring, square/von Neumann, global)[12], any one of them has an

associated connectivity value that refers to the size of any given particle’s neighborhood. A swarm using

a ring topology, for example, would have a connectivity value of 2, as each particle is connected to only

2 neighbors, while a 20-particle swarm with a global topology would have a connectivity value of 19,

representing its connection to every other particle in the swarm.

Connectivity influences the speed with which information is propagated throughout the swarm. A

new global best position that is discovered by a particle in a fully connected swarm will be available to

every other particle at its next evaluation, while the position will only become available to a particle in

a 2-connected swarm when one of the particle’s two neighbors discovers it. As particles generally move

toward a newly introduced position rather than directly onto it, this results in a wider area of exploration

for swarms with lower connectivity as particles follow an optima into an area and pass information about

their surroundings - but not necessarily the optima itself - to their neighbors.

Some PSO variants use swarm topologies that are asymmetric, i.e. particles do not necessarily have

the same number of connections. An example is the Tribes system[11], where each particle has a high

number of connections within a small subswarm, and a limited number of particles in each subswarm

also have connections to particles within other subswarms. The connectivity of any graph/swarm is given

as the number of connections to the most-connected node/particle, so a single value can still be used to

describe this feature. It also means that we cannot assume that for a K-connected swarm, every particle

has K connections - all that it tells us is that at least one particle has K connections.

For the sake of keeping the approach taken here relatively simple and practical for general use, only

K-regular topologies are used in the following investigation. If the K-connectivity value is reported as x,

all particles in the swarm are connected to x other particles. This prevents situations from arising where

unique topologies are created by circumstances of the adaptive optimization that are specific only to that

particular problem and point in the process. While such topologies may be highly tuned to the problem

at hand and potentially produce excellent performance, it is more beneficial in the interest of replication

to restrict the range of available topologies to those that can be defined and understood prior to use.

6.3 Convergence Rate as an Adaptive Measure

It is important when adapting these three parameters to avoid doing so in an arbitrary way. Increasing the

size of the swarm by 1 particle is only meaningful if we know how this change affects the optimization

behaviour and capability of the algorithm. Also important is an understanding of how the values of the

different parameters affect the swarm in different ways - for example, the relative effect of the number

of particles versus the set value for φ.

The speed of convergence to a minimum was chosen as a measure of the effect of parameter adjust-
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ment, as this phenomenon is one of the principle behaviours of a functional optimization algorithm. The

simple sphere problem f1 was used to determine the convergence rate of a swarm from random uniform

initialization within the basin of attraction down to the minimum. With a single optimum available to the

swarm along with a smooth slope leading to that optimum, the swarm’s ability to converge will not be

hindered by characteristics of the landscape, and thus can be expected to be consistent across multiple

runs using the same parameter settings.

A steady logarithmic convergence is the norm for a swarm optimization algorithm on a smooth

unimodal problem such as f1. With this in mind, a convergence factor was calculated for multiple

settings of each of the three adaptable parameters. This factor was defined as the negative of the simple

gradient (−∆y
∆x ) of the straight line that is seen on convergence plots of the mean fitness over 500 runs for

the sphere problem when a logarithmic fitness scale is used, as shown in Figs 6.1(a), 6.1(b), and 6.1(c)

for the 30-dimensional sphere problem. This is fully expressed as:

γ =
〈
− log10 f(T )− log10f(1)

T − 1

〉
(6.1)

where f is the fitness after a specific number of function evaluations, and T is the number of eval-

uations necessary for the algorithm to find the global optimum to within f(T ) = 10−15. Using region-

scaling for initialization in order to prevent an initial value fixed on the origin, the expected value of each

individual component in the particle position will be either -75.0 or 75.0 (region scaling will initialize

uniformly in the top or bottom quarter of each dimension; the search space for sphere is [-100..100]).

Taking into account the exponential fitness function for the sphere function, the associated particle fit-

ness at this expected value can be fixed at 175000. Using this for the value of f(1), a convergence rate

was obtained for each parameter setting that is dependent only on the number of function evaluations T .

Using this method, higher, i.e. faster, rates of convergence were derived from parameter settings where

fewer function evaluations were required to find the minimum of the search space.

These convergence rates were determined using a 30-dimensional search space. Convergence rates

for problems from 5 to 50 dimensions were tested for all three parameters and are shown in Figs 6.2, 6.3,

and 6.4. While the rates were higher for lower dimensions and lower for higher dimensions, the shape

of the curve was generally independent of dimensionality, and the rates were derived from the 30-

dimensional problem, which fell nearest the average levels. Further, the 30-dimensional problem equals

or exceeds most of the benchmarks used in this work, apart from the most complex Lennard-Jones prob-

lems. This ensures that the value of the adapted parameter(s) will never be reduced below that associated

with the fastest rate of convergence.

The convergence rates for the 30-dimensional problem are appropriate for the problems used here

- benchmarks containing numerous higher-dimensional problem spaces may require them to be recalcu-
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Figure 6.1: Convergence factors for adapted parameter values on a 30-dim f1 for PSO-DRS.

lated. This is a relatively quick process of determining the number of function evaluations required to

solve f1 in the desired dimensionality for various values of the tunable parameters.

The relation of these gradients / rates of convergence for the 30-dimensional problem space to

various settings for each parameter are shown in Figs 6.1(a), 6.1(b), and 6.1(c). These figures each

demonstrate a clear relationship between the setting of a parameter and the convergence speed of the

swarm. Each rate was determined for multiple values of a single parameter, with the other two fixed to

their default settings (NP = 50, K = 2, and φ = 1.2). Zoomed views of each of the curves for the

30-dimensional problems are shown in Figs 6.5, 6.6, and 6.7.

Using this information, it is now possible to control how quickly the swarm converges with a high

degree of accuracy by changing individual parameters. Reducing the convergence factor by 10% corre-
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Figure 6.2: Convergence rates in multiple dimensions for values of NP on f1, where K=2, φ=1.2
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Figure 6.3: Convergence rates in multiple dimensions for values of K on f1, where NP=50, φ=1.2

sponds to an increase in the value of the adapted parameter to the value associated with the new rate of

convergence, and thus an increase in the number of function evaluations necessary for the swarm to find

the minimum of a basin of attraction. In the same way, increasing the convergence factor resulted in a

reduction of the adapted parameter, and faster convergence to a minimum.

As can be seen from the comparative plots of convergence factors vs parameter settings, the three



120 Chapter 6. An Adaptive PSO-DRS Framework

Φ

C
on

ve
rg

en
ce

 r
at

e

1.0 1.1 1.2 1.3 1.4 1.5

0
5e

−
4

1e
−

3
1.

5e
−

3

  5−dim
30−dim
50−dim

Figure 6.4: Convergence rates in multiple dimensions for values of φ on f1, where NP=50, K=2

NP

C
on

ve
rg

en
ce

 r
at

e

10 50 100 150

1e
−

5
1e

−
4

2e
−

4
3e

−
4

Figure 6.5: Convergence rates in 30 dimensions for values of NP on f1, where K=2, φ=1.2

adaptable parameters do not all influence the convergence speed equally. The range of the convergence

factor for various parameter settings for the number of particles, corresponding to approximately 25,000

to 300,000 required function evaluations, was nearly ten times the size of the range associated with

various settings for the swarm’s K-connectivity, which only covered approximately 75,000 to 110,000

function evaluations.
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Figure 6.7: Convergence rates in 30 dimensions for values of φ on f1, where NP=50, K=2

Seeing how the settings for the parameters affected convergence allowed for a range of validity to

be set for each parameter. For example, the change in the rate of convergence for increased swarm sizes

shown in Fig 6.2 indicates that the largest differences in convergence speed take place when the number

of particles is low, and flattens out for swarms with more than approximately 150 particles. Using this

information, the range for the allowable number of particles was restricted to fall between the point of
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fastest convergence and the approximate point of slowest convergence, [15..150]. Similarly, the range for

φ was restricted to [1.08..1.5]. No restrictions were added to the range of adaptation for K, as the range

of values for this parameter is already bounded between a minimum connectivity of 2 and a maximum

connectivity of the number of particles in the swarm.

6.4 Adaptation Rules

The three types of adaptations discussed here differ from one another by varying amounts. Adjusting

the number of particles in the swarm can be seen as a similar process to increasing or decreasing the

connectivity of the communication topology. While the change to the swarm structure and the effects on

behaviour are quite dissimilar, the actual process is accomplished in the same way by adding or removing

a component of the swarm - either a particle or a link between two particles.

Adjusting the value of φ is a rather different process. Instead of completely adding or removing a

swarm component, this adaptation involves an adjustment to a pre-existing value. Rather than altering

the form of the entire swarm, only the update equation for each individual particle is changed. Although

this may seem minor in comparison to the other two adaptations, the value of φ is in fact extremely

important to optimization performance, as it has been shown in the previous chapter to have a direct

effect on the stability of the swarm and its ability to converge.

Despite the differences in the processes for the swarm-level and the particle-level adaptations, they

can be broken down into the same general form. Only two adjustments can be made to any of these

three parameters: an increase in value, or a decrease in value. φ can be adjusted by a real amount, while

swarm size and connectivity are adjusted by integer amounts.

Three general adaptive rules were tested in this work; each was applied to the φ, size, and connec-

tivity adaptations. The first of these was:

Adaptive Rule 1a
if best found fitness has improved in the last iteration;

then
increase the value of the parameter;

else
decrease the value of the parameter;

and the opposite:
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Adaptive Rule 1b
if best found fitness has improved in the last iteration;

then
decrease the value of the parameter;

else
increase the value of the parameter;

These rules were intended as demonstrations of how alterations to each parameter affect swarm

behaviour and performance. Rule 1a is used to show how an increase to the value of any of the three

parameters effects a reduction in the speed of convergence: a larger swarm size adds diversity; a larger

value for φ gives a larger size for the step taken by a particle; a larger K-connectivity for the swarm

gives a larger potential search space for each particle (see section 6.5.3 for an explanation of this effect

in a PSO-DR swarm). A swarm operating under rule 1a will slow its rate of convergence every time an

improved position is found, resulting in better exploration of the search space, but slower exploitation of

discovered minima. See previous section 6.3 for a complete explanation of this effect.

The opposite effects occur when the values are decreased, as in rule 1b - reducing the values of any

of the parameters will speed up the rate of convergence of the swarm. Taking this into account, a swarm

operating under rule 1b will increase its rate of convergence at every iteration where it has improved.

In practice this means that once a swarm has started converging toward an attractor, it will continually

increase the speed of this convergence until the minima is reached. Conversely to rule 1a, this means

that rule 1b-adaptive swarms will be worse than a fixed-parameter swarm at exploring the search space,

but better at exploiting individual minima.

The second adaptive rule tested was:

Adaptive Rule 2
if best found fitness has improved in the last iteration;

then
do the previous adaptation again;

else
do the other adaptation;

where the possible adaptations are the increase or decrease in value to the parameter in question.

This adaptation was applied after every iteration, and makes the assumption that if the previous adap-

tation has improved swarm performance, applying it again will be beneficial as well. If, however, the

previous adaptation failed to improve swarm performance, the opposite measure should be applied.

Rule 2 is a somewhat more interactive approach to adaptiveness in the swarm - rather than simply

increasing or decreasing the speed of convergence based on performance, this rule looks at historical data
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to determine how to adapt the swarm. In practice, this means that a diverging swarm should continue to

diverge as long as it continues to discover new attractors, as in rule 1a, and once convergence to one of

these attractors begins, it will increase its speed to quickly optimize the minima, as in rule 1b.

The third adaptive rule tested was even more intricately tied to swarm performance than rule 2.

While rules 1 and 2 were applied at a fixed point at the end of every iteration, the third rule adapted

swarm properties based on a measure related to function evaluations:

Adaptive Rule 3
if best found fitness has improved;

then
if number of function evaluations between improvements has decreased;

then
do the previous adaptation again;

else
do the other adaptation;

This immediate adaptation in response to the current swarm status makes this rule much more

dynamic than the previous two, which use statically defined update points. It also avoids the need for

setting a separate parameter, the number of iterations between adaptations (set to 1 for the other rules).

The selection of these rules is not intended as an exhaustive examination of methods by which

adaptations can be applied to the parameters, but neither were the rules chosen arbitrarily. The rules

were designed for simplicity, both to allow for easy replication, and to make the resulting performance

and behaviour straightforward and comparable between the different approaches. The simple increases

and decreases to the convergence rate, alongside the rules for applying them, were chosen specifically to

prevent complex, unique swarm configurations from arising, as is the case in many adaptive optimizers.

Tribes[11] in particular, while commendable for being arguably the only completely parameter-free par-

ticle swarm optimizer in the literature, has demonstrated very good performance on many benchmarks,

but at the cost of extremely complex adaptive rules that have stymied replication and greatly limited

general adoption.

The two variations on rule 1 show performance and behavioural patterns for the algorithm when

the convergence rate is increased or decreased to the maximum or minimum possible values and held

there. This provides a form of ‘bounds’ of potential performance / behaviour for the swarm when under

adaptation. Rule 2 keeps the value somewhere between these two extremes, but only takes into account

a single measure: whether or not the swarm has improved its best found position. Rule 3 expands on

this, adapting parameters based not just on whether or not the swarm is improving, but also the rate at

which the improvements are taking place.
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These rules are incomplete in terms of presenting a full examination of possible applications of

swarm adaptation (as most or all finite rulesets would be); with that said, the aim of this work is not

to find a “best” rule for adapting the PSO-DRS algorithm, but to demonstrate the features and abilities

of such a swarm when adapted. For those purposes, the rules defined here represent a good method for

examining four very different approaches to adaptation.

6.5 Results for Individual Points of Adaptation

For the sake of brevity, the results tables shown in this section show only the significance of the mean

performance of the adapted-parameter PSO-DRS when compared to a fixed-parameter PSO-DRS with

default parameter settings of NP = 50, K = 2, and φ = 1.2, in tables 6.1–6.4. The columns of these

tables should not be used to compare adaptations or rules, but neither is this a goal of the work – what

is being sought here is a method for improving the basic algorithm, rather than empirically determining

the single best improvement. Full results tables for all combinations of algorithms, rules, and adaptive

parameters can be found in Appendix A.

6.5.1 Adapting φ

The need for an adaptive form of PSO was demonstrated previously in table 4.1 on page 74. No single

value for φ returns optimal results for all problems: the optimal value can range from 1.05 for f1, the

unimodal sphere problem, to 1.35 for f14, one of the problems in the Shekel class. In the static non-

adaptive formulation of the PSO-DRS algorithm, this value for φ is held constant throughout the whole

of the optimization process, which prevents more appropriate values from being used in different phases.

Variations in optimal step size can be linked not only to the phase of the optimization process, but

also to the configuration of the problem landscape. Smaller values of φ translate to smaller step sizes,

larger values to larger step sizes. Multimodal landscapes require a larger step size to allow the swarm

to jump over or out of local minima, while unimodal problems contain no such dangers. Under these

circumstances a smaller step size would allow for faster optimization of a single peak, hence the lower

values of phi for single-minima problems such as f1 and f2, and the simple multimodal f10. Similarly,

problems with a multiple local minima are shown to be best optimized by a swarm using a larger value

for φ, especially when those minima are broadly spaced, as with f4, f13, and f14.

Results for the adaptation of φ on the unimodal problems broadly support this reasoning. Rule

1a (table 6.1) shows significantly poorer performance than the fixed-parameter PSO-DRS for two of

the three unimodal problems, as would be expected when the value of φ is increased as the swarm

improves its best found position. That of rule 1b (table 6.2) is statistically equal to the fixed swarm on

all unimodals, again expected due to the increasing rate of convergence as a peak is exploited under this

rule. Rules 2 (table 6.3) and 3 (table 6.4) show similar equivalent performance, with rule 3 giving a
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particularly good result on the deceptive and difficult Rosenbrock problem (f3).

The results for the simple and difficult multimodals are however somewhat poorer for the adaptive

swarms when compared to the fixed-parameter swarm. Compared to each other, however, the adaptive

rules perform as expected, with the diverging-on-improvement swarm operating under rule 1a outper-

forming the converging-on-improvement rule 1b swarm on five of the six problems. Especially notable

is the behaviour of rule 1b on f4, where it was unable to escape a local optima positioned within the

swarm initialization range on any of its 50 runs. Rules 2 and 3 performed better than one or both of the

rule 1 variations on all of these problems.

Swarm behaviour for the φ adaptation followed predicted patterns almost exactly. The rule 1a-

adapted swarm decreased the rate of convergence over time, and the dip statistic remained high on mul-

timodal problems throughout the optimization process, indicating a dispersed, multimodal distribution

of the particles across multiple peaks. Conversely, the rule 1b-adapted swarm increased the rate of con-

vergence, and accordingly drove the dip statistic below the threshold of unimodality after the discovery

phase, indicating convergence to a single optimum. Figs 6.8(a)–6.9(b) show the effect that these opposite

approaches to adaptation of the convergence speed had on the modality of the swarm distribution on a

complex multimodal landscape over 10 runs.

Rules 2 and 3 provided similar swarm behaviour to each other, with rule 3 maintaining a very

slightly higher rate of convergence on average, and hence a very slightly lower dip statistic value overall.

This similar behaviour led to very similar performance results.

NP K φ NP+K NP+φ K+φ NP+K+φ

f1 – * * * – * –
f2 – – – – – – –
f3 – + – – – * *
f4 – – – – – – –
f5 – – – – – – –
f6 – * * – – – –
f7 * * * * * * *
f8 * * * * * – –
f9 * * * * – – –
f10 * – * * * – *
f11 * * * * * * *
f12 * – – – * – –
f13 * – * – * – –
f14 * – – * * – –

Table 6.1: Significance of results for rule 1a-adapted PSO-DRS vs fixed-parameter PSO-DRS where
+ = better, * = equivalent, – = worse

6.5.2 Adapting NP

The curves in Fig 6.2 shows the strong effect that the number of particles comprising a swarm has on

the speed at which it converges to an optimum. Swarms with fewer than 15 particles drop off quickly

in the rate of convergence on a 30-dimensional sphere problem, while increases over approximately
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Figure 6.8: Values of φ on f7 under adaptation
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Figure 6.9: Dip values for swarms adapting φ on f7



6.5. Results for Individual Points of Adaptation 129

NP K φ NP+K NP+φ K+φ NP+K+φ

f1 * * * * * * *
f2 * – * * * * *
f3 * * * * – * –
f4 – – – – – – –
f5 – * – – – – –
f6 * * – * – – –
f7 * * * – – * –
f8 * * * * * * *
f9 * * * * * * –
f10 * * * * * * *
f11 * * – * * * –
f12 * – * * * * *
f13 * – * * * – *
f14 * – – * * – *

Table 6.2: Significance of results for rule 1b-adapted PSO-DRS vs fixed-parameter PSO-DRS where
+ = better, * = equivalent, – = worse

NP K φ NP+K NP+φ K+φ NP+K+φ

f1 – – * – * * *
f2 – – * – – * *
f3 – – * * * * *
f4 – – – – – – –
f5 – * – * * – –
f6 – * * – – – *
f7 – * * * * – *
f8 – * * * * * *
f9 – * * * * * *
f10 * – * * * * *
f11 * * * * * * *
f12 * – * – * – –
f13 * * * * * * *
f14 * * – – * * *

Table 6.3: Significance of results for rule 2-adapted PSO-DRS vs fixed-parameter PSO-DRS where
+ = better, * = equivalent, – = worse

150 particles have a negligible effect. The regular spacing between the convergence plots in Fig 6.1(a)

indicate a linear relationship between the number of particles in the swarm and the number of function

evaluations necessary to optimize the minima - the mean difference in function evaluations between

two swarms of size NP and size NP + 1 for NP = 15 to 100 is calculated to be 1498.8 ± 3.9. As

the mean value of FEvals/NP (i.e. the number of iterations required for convergence) for the same

values of NP is 1503.4 ± 4.4, we can surmise that each additional particle over the minimum of 15

is completely non-integral to the optimization of the single minima, and merely serves to increase the

number of required function evaluations unnecessarily.

With this information we can predict that small swarms will perform best on unimodal problems,

and on multimodals where the global attractor is easily found, and that large swarms will perform poorly

on these same problems. This is borne out in the results obtained, where rule 1b, which reduces the

number of particles in the swarm on improvement, shows excellent performance on all three unimodal

problems, and several of the simple multimodals. Likewise rule 1a, which increases NP on improve-
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NP K φ NP+K NP+φ K+φ NP+K+φ

f1 * – * * * * *
f2 – * * * * * *
f3 * – * * * * –
f4 – – – – – – –
f5 * – – * * – –
f6 * * * * * * *
f7 * * * * * * *
f8 * * * * * * *
f9 * * – * * * *
f10 * – * * * * –
f11 * * * * * * *
f12 * – * * * * –
f13 * * * * * * *
f14 * * – * * * *

Table 6.4: Significance of results for rule 3-adapted PSO-DRS vs fixed-parameter PSO-DRS where
+ = better, * = equivalent, – = worse

ment, shows poor performance on the same problems.

Intriguingly, rule 2 showed much worse performance on the unimodal problems than either of the

variations of rule 1. The simple multimodal problems f10–f14 were the only ones for which rule 2

returned good results when adapting NP .

Rule 3 was equivalent to the fixed-parameter PSO-DRS on f1 and f3, and worse on f2 (though not

nearly as much so as rule 2). On the simple multimodals it showed very good performance, equivalent

to the fixed-parameter PSO-DRS on all problems.

The more complex multimodal problems, which require a balance of exploration and exploitation,

were mixed in results for the two basic rules, with each equalling the fixed-parameter swarm for f7–f9.

Rule 1b was able to reliably find the global minimum on each of these three, and regularly find it on

f6. Rule 2 again performed extremely poorly on all of these, while rule 3 again performed very well on

almost the entire range.

While it is straightforward to track the value of NP throughout the optimization process, which can

be seen in fig 6.16(a), the dip statistic is not very applicable to this adaptation. Particles that are added

to the swarm are placed randomly within its diameter, and removed particles are chosen randomly; both

activities lead to large jumps in the dip value, depending on where these particles are added/removed,

that do not reflect the actual behaviour. In addition, the increase and decrease in the sample size of

the distribution with each adaptation leads to a constantly changing threshold for unimodality in the dip

statistic. For this reason the measure was not used as an indicator of behaviour for swarms where NP

was under adaptation.

6.5.3 Adapting K

The social aspect of the PSO-DRS algorithm, i.e. the recombinant position, is constructed in such a way

that adjusting the k-connectivity of the swarm topology has the opposite effect to adjusting this parameter
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in a standard PSO swarm. The social component of the SPSO algorithm takes the single best position

found by any member of the neighborhood of the updating particle, which means that an increase in K

has the effect of making a single best found position available to an increased number of particles, in

turn increasing the rate of convergence.

Conversely, the recombinant position in the PSO-DRS algorithm is composed of a combination of

the positions of every neighbor, randomly chosen by dimension. A larger neighborhood means more

potential values are available for each dimension of the recombinant term, which results in a larger

number of possible recombinant positions. This increase in the searchable area for the particle slows

convergence for the swarm, as seen in Fig 6.1(b).

The effect of the rate of convergence is clearly seen in the results for the single-point adaptation of

the K parameter for the unimodal sphere function, f1. Comparing the number of function evaluations

required for optimization using the 1a and 1b adaptation rules shows that a swarm adapted by rule

1b finds the optimal point much faster than one using rule 1a, in 75000 evaluations vs 136000. This

is expected behaviour - as the swarm converges to the minima, the best found position is continually

improving, resulting in a reduction in the value of K when using rule 1b. Each reduction reduces the

potential search space for a particle, down to the value K=2, where it is only able to obtain possible

corners of the hypercube from its immediate neighbors and limiting the influence of outliers to the

minimum possible sub-section of the swarm. Given the lack of additional peaks in f1, this focuses the

optimization power of the swarm on the single minima and prevents unnecessary function evaluations

from being expended in a generally fruitless discovery phase.

The more interactive adaptive techniques of rules 2 and 3 had mixed performance on the unimodal

problems, with the sphere, f1, proving particularly problematic. On f2 both outperformed the diverging

behaviour of rule 1a, and rule 2 significantly outperformed the other rules, though still falling short of the

fixed-parameter PSO-DRS. Results were better on the multimodal problems, with either one or both rules

providing equal or superior performance over both the fixed-K and rule 1a/1b-adaptive formulations on

all but two problems (f10 and f12).

Behaviour for the K-adapted swarms, seen in the dip values in figs 6.10(a) and 6.10(b), was quite

interesting. Despite the slow convergence rates of the rule 1a-adapted swarm, apart from a very brief

moment at the start of the optimization, the average dip value remained well below the modality threshold

in general, demonstrating that the swarm had almost no period of multi-peak discovery. Rule 1b, on

the other hand, kept the swarm on average above the threshold throughout the optimization process,

indicating that convergence of the entire swarm to a single peak was rare and difficult. This is seemingly

opposite to what should be expected - slow-converging rule 1a swarms should have high dip values on

average, and fast-converging rule 1b swarms should have low average dip values. This discrepancy is

explained by the details of how the value of K affects the update equations for particles.
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Figure 6.10: Average dip values for swarms adapting K over all problems
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The low average dip value seen in fig 6.10(a) for the rule 1a-adapted swarm is a result of the

increased neighborhood size of each particle for increased values of K. With more possible positions

available for a particle to move to, the likelihood of it moving nearer to a single neighbor in multiple

dimensions is decreased, with a corresponding reduction in the ability of multiple particles to clump

together in separate groups. This is reflected in the nearly constant unimodal distribution of the particle

positions within the swarm. In the same way, the constant reduction of a particle’s options for movement

down to the positions of only a very few neighbors, as in the rule 1b-adapted swarm results seen in

fig 6.10(b), will lead to individual particles being drawn together in many, or all of the dimensions of the

problem landscape, hence the observed higher average dip values.

6.6 Results for Multiple Points of Adaptation

As each adaptable parameter influences the convergence rate of the swarm by different amounts, adapting

multiple parameters in a single optimization process will lead to adjustments that are finer-grained and

more complex. With 136 possible values for NP (15-150), there are equivalently 136 possible rates of

convergence for a swarm that adapts this parameter and uses fixed values for φ and K. Similarly, the

number of selectable rates for φ is 43 (1.08-1.50) and for K is 48 (2-49) in the case where K alone is

under adaptation and NP is fixed at 50.

When more than one of these parameters is adapted simultaneously, however, the number of pos-

sible combinations of their associated rates of convergence is much higher, and given the explicit in-

teraction between NP and K, not a fixed value over time. The lowest of these values, for the K + φ

multi-point adaptation, is already 2064 (48 ∗ 43) possible combinations, while the highest, for NP + K

+ φ, is 6450 NP − 12900 (150 × (NP − 2) × 43), depending on the value of NP, giving a range of

[83850..954600] possible combinations for NP = [15..150].

Given this much finer level of granularity, it is possible to fine-tune the convergence rate of the

swarm to a much higher degree. Multiple approaches to selecting which of the parameters under adap-

tation to adjust are available (e.g. random, weighted random, heuristic rules, etc.) and were tested - the

results reported here used random selection for simplicity, as well as due to the minor effect this choice

had on simulations. In cases where both NP and K were under adaptation, if K = NP − 1 and NP was

selected and reduced, K was accordingly reduced to the new value of NP − 1. K was unchanged when

NP was selected and increased.

While this information goes some way to explaining the increased complexity of multi-parameter

adaptation over single-parameter, it is in no way a full picture of the swarm under these conditions. The

interactions between the parameters, and the corresponding effect on behaviour, is a deep subject that is

reserved for future work.
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6.6.1 Adapting NP + K

As seen in the single-point adaptation results, the unimodal problems were best optimized by swarms

that had the fastest rates of convergence, i.e. those for which the adaptable parameters are at low values.

This was exemplified by rules 1a and 1b: the swarm being adapted by rule 1a increased the parameters

as the minima was optimized, slowing the convergence speed, and giving poor results, while the rule

1b swarm decreased the parameters during optimizations and returned excellent results for all unimodal

problems.

The other two adaptive rules - designed to strike a balance between extremes - were expectedly

more mixed. Rule 2 was unable to successfully optimize f1, but results were good for the other two

unimodals. Rule 3 did poorly on f2, though it is notable that this was largely due to the wide disparity

in performance between runs, reflected in the high standard error. On ”good” runs, the rule 3-adapted

swarm did much better than the baseline fixed-parameter swarm, while on ”bad” runs, it did much worse.

For the complex multimodal problems, rule 3 showed the best performance overall, with compet-

itive success rates and means. The same disparity between good and bad runs was again seen via the

excellent minimums, very poor maximums, and high standard error on the means. Rule 2 performed well

in most cases when only the mean performance is looked at - success rates were abysmal throughout.

The rule 1 variations each performed poorly on f4 − f6, but better on f7 − f9.

Rule 3 again performed very well on the simple multimodal problems, competitive with the fixed-

parameter swarm on all, though slightly slower. Rule 2 attained good mean performance on the shekel

problems, but had low success rates for these.

6.6.2 Adapting NP + φ

Unimodal results for the rule 1 variations were very poor for rule 1a, and more mixed for 1b, which

performs well on f1, and despite a high mean on f2, the variance is high enough to make it statistically

equivalent to fixed-parameter PSO-DRS. The combination of adapting both NP and φ, the two most

influential PSO-DRS parameters, causes the swarm to either diverge too quickly, missing the opportunity

to find good minima, or to converge too quickly, in a suboptimal region of the global optimum. This is

supported by the improved results seen when using the less extreme rules 2 and 3.

Performance on the complex multimodals was somewhat similar to that seen in the NP+K adap-

tation. The rule 1 variations both gave mostly abysmal results on f4 − f6, and better on f7 − f9 - 1b

was particularly good on the latter three problems, performing competitively with the fixed-parameter

PSO-DRS. In contrast, the same rule fell victim to the same trap seen in the single-point φ adaptation,

where the swarm being adapted converged upon and was unable to escape a local minima located within

the scaled initialization region.

Rule 2 again returned very good results in terms of mean performance, but was again unable to
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find the optimum on any of these problems, giving 0% success rates. Rule 3, meanwhile, was very

good on the entire range of problems, and particularly effective on the very difficult Rastrigin problem,

f5. All other adaptive PSO-DRS, fixed-parameter PSO-DRS, and SPSO swarms were unable to find the

optimum for this problem (barring two minor exceptions of 6% and 4%), making the 32% attained by

this adaptation a standout result.

The simple multimodal problems were fairly easily optimized by all of the adapted swarms, though

it is interesting to see that while rule 1b had excellent success rates, the means are actually quite high.

This is explainable by the very high standard errors - on the few occasions where the swarm did badly, it

was only able to find very sub-optimal attractors.

6.6.3 Adapting K + φ

Results for unimodal problems f1 − f3 follow the same general pattern seen previously, with 1a giving

very poor performance overall, and 1b doing very well. Rule 2 performs very similarly to 1b, while rule

3 does well on f1 and much poorer on f2 and f3, although the high standard error on the latter problems

indicates a high disparity between good and bad runs.

Complex multimodal results show that the extreme behaviour of rules 1a and 1b results in perfor-

mance inferior to the fixed-parameter swarm on all but one problem for each. Rules 2 and 3 each did

rather well, equaling the excellent performance of PSO-DRS on several of the problems when measured

by mean performance. However in most cases, all of the rules gave at best mediocre performance on the

complex multimodal problems in terms of successful optimizations. None was able to equal the results

of the fixed-parameter PSO-DRS by that measure, and many of the results were the worst obtained for

any of the adaptive swarms.

Similarly, success rates were inferior for the simple multimodal problems to almost all other swarm

configurations, though not as much so as seen in f4 − f9, though means were equivalent to the fixed-

parameter swarm in most cases for all but rule 1a. The most notable feature of the performance on these

problems is in the speed of the successful optimizations, with a significantly lower number of function

evaluations needed to find the optimum in the relevant cases. When the swarm is unable to find the

optimum, as is the case much of the time, the alternative point of convergence tended to be very poor.

6.6.4 Adapting NP + K + φ

The most-adapted form of the PSO-DRS works with all three parameters, giving both the most finely-

grained degree of adaptation, and the most extreme rates of convergence. The effects of these extremes

are represented in the unimodal results for rules 1a and 1b, with each one giving extremely poor results,

with the exception of 1b on the basic sphere problem. Fast, successful performance is to be expected

in that individual instance, given that the algorithm needs only to converge as fast as possible to a very

easily-found minima. The other problems, f2 and f3, require slightly better discovery ability alongside
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fast convergence, resulting in extremely poor performance by the two rule 1 variations – with that said,

statistical equivalence to PSO-DRS was achieved by 1b on f2 by means of the high variance. Rules 2

and 3 provide this better balance, reflected in the much-improved results.

This same pattern is seen in the complex multimodal problems, although here rule 1b is able to

return at least mediocre results on f7 − f9. Rules 2 and 3 again are better overall, and although neither

is able to match the fixed-parameter PSO-DRS on a majority of the problems, mean performance is

equivalent in the majority of trials. Similar results are obtained for the simple multimodals, particularly

in the case of the performance of rule 1a on f10, which is the worst obtained by any of the algorithms

examined here.

6.7 The Lennard-Jones Atomic Cluster Optimization Problem

6.7.1 Background

The Lennard-Jones potential is a mathematical model that closely approximates the interaction between

neutral atoms[133]. Determining the structural arrangement of multiple atoms that minimizes this po-

tential energy function presents an ideal problem for global optimization, in that it is simultaneously

easy to describe and formulate, but difficult to solve. This problem has existed in the literature for quite

some time and is well understood [135][136]. Its exponentially increasing number of local minima with

the number of atoms makes it a straightforward matter to attempt to solve formulations of increasing

difficulty.

On a practical note, chemistry literature commonly cites the knowledge of the global minima of

Lennard-Jones clusters as “a fundamental step towards a better understanding of some molecular con-

formation problems”[137]. Because of this a great deal of effort has gone into determining these minima,

and to date they are believed to be known for all cluster sizes of up to 250 atoms[138].

Lennard-Jones problems are fairly well known in the global optimization literature, and are used to

demonstrate the applicability of algorithms to “real world” problems. Purpose-built genetic algorithms

have been demonstrated to be able to reliably solve the problem for up to at least N = 110, when the

algorithm was specifically designed for solving only this specific problem[139][140]. PSO algorithms

have also been applied in varying capacities, from GA-comparative works[141] to use as examples of

multi-funnel landscapes[142]. These examinations were limited to at most N = 15, and showed mostly

poor performance – [142] was in fact an attempted demonstration of the unsuitability of the standard

PSO algorithm for this type of landscape.

Better results were obtained for the N = 26 Lennard-Jones problem using an enhanced and exten-

sively specialized form of the inertia-weight formulation of PSO[143], indicating that the algorithm is

not inherently unsuited to Lennard-Jones problems, but can be adapted from the default configuration

to provide improved performance. This reformulation of the algorithm introduced a number of features
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implemented exclusively for the atomic structure problems, such as a measure of “distance” between

discovered atomic structures and the associated implications to the organization of the problem space.

Further modifications included a vast increase to swarm size to 1000 particles, and the use of periods of

attraction and repulsion between particles in order to maintain diversity within the swarm. These modifi-

cations allowed the algorithm to reliably find the global optimum of the 26-atom Lennard-Jones problem

(it was not tested on any other configuration), but restricted its applicability entirely to the optimization

of this and similar atomic structuring problems[143].

6.7.2 Definition

The potential energy in a Lennard-Jones atomic cluster can be represented by the equation:

E = 4ε
N−1∑
i=1

N∑
j=i+1

[
(
σ

rij
)12 − (

σ

rij
)6)
]

(6.2)

where N is the number of atoms in the cluster and rij is the distance between two atoms i and

j. ε and σ represent specific features of the atomic structure, and here are set to 1, as per previous

studies[140][143].

The large number of very deep minima requires an optimization algorithm to be able to both ef-

ficiently explore the landscape, and then rapidly exploit the discovered basin of attraction prior to pre-

mature convergence. 21 different formulations of the problem were used here, of increasing difficulty:

starting with the simplest configuration, 2 atoms, all configurations up to 20 atoms were tested, along

with the 26-atom configuration, and the extremely complex 38-atom configuration. Minimum potential

energies for all 21 configurations are shown in table 6.1. Each atom was represented in 3-dimensional

space, giving problems with dimensionalities ranging from 6 for the 2-atom configuration, to 114 for the

38-atom configuration.

Problem Energy Problem Energy Problem Energy
LJ2 -1.000000 LJ9 -24.113360 LJ16 -56.815742
LJ3 -3.000000 LJ10 -28.422532 LJ17 -61.317995
LJ4 -6.000000 LJ11 -32.765970 LJ18 -66.530949
LJ5 -9.103852 LJ12 -37.967600 LJ19 -72.659782
LJ6 -12.712062 LJ13 -44.326801 LJ20 -77.177043
LJ7 -16.505384 LJ14 -47.845157 LJ26 -108.315616
LJ8 -19.821489 LJ15 -52.322627 LJ38 -173.928427

Table 6.5: Minimum potential energy for tested Lennard-Jones configurations.

The 2-atom through 20-atom problems provide both a sizable sample for obtaining a full view of

the performance of each algorithm, and a good point of comparison for other algorithms in the literature,

most of which test on this range or a subset. The 26-atom configuration was used purely for comparison

to the aforementioned PSO variation that reliably solved it due to having been explicitly built and tuned

for this specific problem and configuration[143]. The 38-atom configuration of the problem was chosen

for its interesting property of having two unique minima, each in a separate global basin of attraction.
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This quality both simplifies the problem by providing two available solutions, and increases the difficulty

by making convergence to and exploitation of only one of those peaks by the entire swarm more difficult.

There is no commonly-defined initialization or bounding strategy for an optimization population

on the Lennard-Jones class of problems. Global optimization literature favors initializing the popula-

tion with a uniform spread throughout the search space[139], or a region-scaled approach[142], while

publications concerned with the real-world chemical aspect of the problems are more forgiving, disal-

lowing unfeasible solutions and enforcing minimum distances between atoms[143][140]. No bounds are

explicitly defined either; none of the referenced literature makes mention of them.

As both of these properties can influence the performance of the algorithm, a conservative approach

was taken here. The population was uniformly initialized throughout the space, but the initialization

space was defined to extend beyond the optimal points in each dimension by 10 times the maximum

space between them. For example, the optimal solution for the 3-atom configuration is shown in table

6.2 (precision has been abridged for the sake of this example).

Dim 1 Dim 2 Dim 3
Atom 1 0.44 0.11 -0.46
Atom 2 -0.52 0.39 0.05
Atom 3 0.08 -0.50 0.40

Table 6.6: Optimal structure for the 3-atom Lennard-Jones problem

In the first dimension, the optimal points for each atom are 0.44, -0.52, and 0.08. The maximum

distance is therefore 0.44 + 0.52 = 0.96, and hence the initialization region in that dimension will cover

a space with a size of 9.6, i.e. [−4.8..4.8]. Because this value is tied to the configuration of the specific

problem under optimization, initializing the swarm in this manner will not predispose any configuration

to a performance result that is better or worse than that of any other configuration, as could be the case

with bounds of initialization that were fixed and common to all configurations.

Feasible bounds during optimization also vary in the literature. Again, the strategy used here can

greatly influence overall behaviour and performance – a feasible search space that only barely encom-

passed the optimal solution would render the problem much simpler than a space in which the range

containing all components of the optimal solution represented only a small area of the whole. To avoid

any semblance of problem structure influencing algorithm performance, no boundaries were defined for

the atomic configurations tested here. All particle positions were considered feasible and evaluated.

These conservative approaches to the problem search space will almost certainly negatively affect

the performance of the algorithms tested here, at least when compared to that of the algorithms proposed

in other studies. As the focus of this work is mostly confined to the algorithms defined and tested within,

however, this only needs to be taken into account in comparisons to the other studies, none of which

define their search spaces to the extent of being reproducible.
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Fixed−parameter DRS v SPSO on Lennard−Jones problems
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Figure 6.11: Fixed-parameter PSO-DRS v SPSO on full range of Lennard-Jones

6.8 Lennard-Jones Performance

6.8.1 Fixed-Parameter PSO-DRS and SPSO

Both the fixed-parameter discrete recombinant swarm and the standard PSO swarm show uninspiring

performance on much of this class of problems – results are shown in tables 6.14 – 6.15. While the

SPSO swarm does well on the 2- to 11-atom configurations, mean performance quickly drops after this

point, with results for the 18-, 19-, 20-, 26-, and 38-atom configurations only slightly better than a

random search. Taking into account the differences in population initialization, these results were in line

with those reported in the literature for a basic PSO algorithm[141].

DRS performance shows the opposite general trend, underperforming SPSO in all configurations

between 7 and 14 atoms, but giving significantly better mean fitness levels for configurations of 15-20

atoms, as well as the 26- and 38-atom configurations. This can be seen in figure 6.11, which plots

− 〈error〉E , i.e. negative of the mean error found by the algorithm over E =minimum potential energy

(see equation 6.2 and table 6.1). This allows for a scale-free comparison of performance across all

21 problems, from 0.0 indicating a mean error of 0.0, to 1.0 indicating a mean of the maximum error

possible.

The marginal performance overall illustrates the potential for an adapted algorithm to give improved

performance over the base fixed-parameter swarms.
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NP K φ NP+K NP+φ K+φ NP+K+φ

LJ2 * * * * * – –
LJ3 * – – – – – –
LJ4 – – – – – – –
LJ5 – – – – – – –
LJ6 – – – – – – –
LJ7 – – – – – – –
LJ8 – – – – – – –
LJ9 – – – – – – –
LJ10 – – – – – – –
LJ11 – – – – – – –
LJ12 – – – – – – –
LJ13 – – – – – – –
LJ14 – – – – – – –
LJ15 – – – – – – –
LJ16 – – – – – – –
LJ17 – – – – – – –
LJ18 – – – – – – –
LJ19 – – – – – – –
LJ20 – – – – – – –
LJ26 – – – – – – –
LJ38 – – – – – – –

Table 6.7: Significance of results for rule 1a-adapted PSO-DRS vs fixed-parameter PSO-DRS on
Lennard-Jones problems where + = better, * = equivalent, – = worse

6.8.2 Adaptive PSO-DRS

The Lennard-Jones problems are where the benefit of adapting the parameters of the PSO-DRS is most

clearly seen. Rules 1b, 2, and 3 all show significantly improved performance over the fixed-parameter

swarm on many of these difficult problems.

The two variations of rule 1 show the most extreme effects of the adaptive behaviour on perfor-

mance. Rule 1a, which enforces swarm diversity at the expense of convergence ability, was significantly

worse than the fixed-parameter formulation of the PSO-DRS algorithm on all but 6 of the 147 config-

urations of the problem – it was statistically equivalent on those 6, without a single demonstration of

improved performance. Table 6.7 and figures 6.12(a) and 6.12(b) clearly indicate the poor performance

of this strategy on optimizing all but the simplest configurations.

As seen on the f1–f14 problems, when one of the variations of rule 1 performs poorly, the other

performs well. This is very much the case with rule 1b, which showed exceptional performance on

the entire range of Lennard-Jones problems. Of the 147 problems, significantly better performance was

obtained in 100 instances, and equivalent performance in another 44. The majority of the improved

results came from the more complex atomic configurations, starting from the 8-atom problem – this is

especially interesting when the comparatively good performance of PSO-DRS in relation to SPSO on

these same problems is taken into account.

Significance results for rule 1b-adapted swarms can be seen in table 6.8, but the performance plots

shown in figures 6.13(a) and 6.13(b) provide more information on the effects of the adaptations. Adapta-

tion of the K-parameter gives equivalent, nearly identical performance to the fixed-parameter PSO-DRS,
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NP K φ NP+K NP+φ K+φ NP+K+φ

LJ2 * * * * * * *
LJ3 * * + * + + +
LJ4 * * * * * * *
LJ5 + * + * * + +
LJ6 – * * – * * *
LJ7 * * + * * + *
LJ8 + * + + + + +
LJ9 + * + + + + +
LJ10 + * + + + + +
LJ11 + * + + + + +
LJ12 + * + + + + +
LJ13 + * + + + + +
LJ14 + * + + + + +
LJ15 + * + + + + +
LJ16 + * + + + + +
LJ17 + * + + + + +
LJ18 + * + + + + +
LJ19 + * + + + + +
LJ20 + * + + + + +
LJ26 + * + + + + +
LJ38 + – + + + + +

Table 6.8: Significance of results for rule 1b-adapted PSO-DRS vs fixed-parameter PSO-DRS on
Lennard-Jones problems where + = better, * = equivalent, – = worse

which fixes K at 2, in all but the most complex problem configuration. As rule 1b encourages fast conver-

gence by decreases the value of the parameter under adaptation every time the swarm improves its best

found position, this result, alongside the poor result for increased values of K under rule 1a, confirms that

the lowest value of K=2 will give the best possible performance for all values of K on the Lennard-Jones

problems.

It is notable that while the swarms adapting either NP or φ using rule 1b performed very well, when

those two parameters were adapted together performance was even further improved, as can be seen in

the results for NP+φ and NP+K+φ. Both of these configurations showed performance that was the best

of any rule / parameter(s) combination, indicating that pushing for the fast convergence associated with

low values for the adaptive parameters is the best found strategy for the atomic structuring problems

when optimized with a PSO-DRS algorithm.

Results for the rule 2-adapted swarm were mixed, and are shown in table 6.9 and performance plots

in figures 6.14(a) and 6.14(b).

The swarms that placed NP or K individually under adaptation both performed significantly worse

than the fixed-parameter swarm, but the performance of the swarm using rule 2 to adapt φ was signif-

icantly improved. When the adaptations were applied to multiple parameters, the results showed that

the adaptation of NP+K resulted in performance that was almost always significantly worse than the

fixed-parameter swarm, but each of the combinations of parameters that involved φ (NP+φ, K+φ, and

NP+K+φ) was significantly improved. In particular, the NP+φ adaptation gave results that were equiv-

alent to the best seen in the best rule 1b-adapted swarms.
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NP K φ NP+K NP+φ K+φ NP+K+φ

LJ2 * * * * * * *
LJ3 – – * * + + +
LJ4 – – * * * * *
LJ5 – – + + * + *
LJ6 – – * – * * *
LJ7 – – + – * + +
LJ8 – – + – + + +
LJ9 – – + – + + +
LJ10 – – + – + + +
LJ11 – – + – + + +
LJ12 – – + – + + +
LJ13 – – + – + + +
LJ14 – – + – + + +
LJ15 – – + – + + +
LJ16 – – + – + + +
LJ17 – – + – + + +
LJ18 – – + – + + +
LJ19 – – + – + + +
LJ20 – – + – + + +
LJ26 – – + – + + +
LJ38 – – + – + + +

Table 6.9: Significance of results for rule 2-adapted PSO-DRS vs fixed-parameter PSO-DRS on Lennard-
Jones problems where + = better, * = equivalent, – = worse

Rule 3-adapted swarms were also mixed in performance, although not in the same way as those

adapted by rule 2. While the K-adapted swarm again performed poorly, the swarm that adapted NP this

time was significantly improved over the fixed-parameter configuration. The φ adaptation again gave

very good performance.

As before, the results of the single-point adaptations can be seen in the multi-point results, both

of which are shown in figures 6.15(a) and 6.15(a). This time the NP+φ swarm was significantly im-

proved, but every other configuration demonstrated reduced performance. As the NP+φ combination

of parameters is the only one not including K in the adaptation, this could be an indication that poor or

unnecessary adjustments to K are influencing the behaviour of the swarm, negating the improvements

that would otherwise come with the adaptation of NP and K.

6.9 Discussion

6.9.1 Behaviour

The effects of the various rules on the rate of convergence for the swarm over time can be seen in

Figs 6.16(a),6.16(b), and 6.16(c). The associated adjustments to the parameters under adaptation follow

the predicted patterns for an average optimization: rule 1a drops to the lowest/slowest possible rate of

convergence, rule 1b increases to the highest/fastest rate, and rules 2 and 3 operate somewhere in between

these two extremes.

Plots of the value for rule 3 adapting φ or NP show the convergence rate at iteration 1 as substantially

higher than for the other rules - this is due to the update schedule for rule 3 being dynamic, rather than a
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NP K φ NP+K NP+φ K+φ NP+K+φ

LJ2 * * * * * * *
LJ3 + – * – * – –
LJ4 * – * – * – –
LJ5 + – + – + – –
LJ6 * – * – * – –
LJ7 + – * – + – –
LJ8 + – + – + – –
LJ9 + – + – + – –
LJ10 + – + – + – –
LJ11 + – + – + – –
LJ12 + – + – + – –
LJ13 + – + – + – –
LJ14 + – + – + – –
LJ15 + – + – + – –
LJ16 + – + – + – –
LJ17 + – + – + – –
LJ18 + – + – + – –
LJ19 + – + – + – –
LJ20 + – + – + – –
LJ26 + – + – + – –
LJ38 + – + – + – –

Table 6.10: Significance of results for rule 3-adapted PSO-DRS vs fixed-parameter PSO-DRS on
Lennard-Jones problems where + = better, * = equivalent, – = worse

fixed update at the end of each iteration. By the time iteration 1 is complete and the convergence rate is

recorded, rule 3 will have updated the value of the parameter under adaptation multiple times, resulting

in the higher values seen in the plots at iteration 1.

That the rate of convergence under rule 3 reduces after the initial exploration phase and comes

to match that of the rule 2-adapted swarms, especially in the case when φ is under adaptation, shows

both the similarity and the differences between the two rules. Both appear to slowly raise the adapted

parameter throughout the lifetime of the optimization after approximately 100 updates, increasing the

rate of convergence, but while this is also the behaviour for rule 2 at the start of the process, rule 3

quickly raises the adapted parameter within the first few updates, then reduces it over time until a point

where the increase begins again. Given the superior performance of rule 3 over rule 2 on most of the

benchmark problems, this strategy seems to have merit.

In terms of behaviour, this quick increase to convergence speed, followed by a decrease, then a slow

increase does not fit as well with the concept of the phased approach to optimization as a simple slow

increase. At the very start of the optimization it seems appropriate for the convergence speed to be kept

low to prevent premature convergence, slowly increased as minima are discovered, and increased further

as a single optima is settled on in order to facilitate fast exploitation. By quickly increasing the rate

of convergence right at the start of the optimization, rule 3 encourages the swarm to begin discovering

minima immediately, without the initial phase of spreading out to explore the search space. As this

behaviour had a positive effect on the performance of the swarm, it could suggest that exploration is less

important to the algorithm than quickly selecting and exploiting the first few minima that are discovered.
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Single−point adaption using rule 1a
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Multi−point adaption using rule 1a
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Figure 6.12: Performance of rule 1a-adapted swarms on the Lennard-Jones benchmark

6.9.2 Performance

The performance of the swarms under adaptation ranged quite a bit, depending on the rule being used

and the parameter, or parameters, under adaptation.

Rules 1a and 1b, with their extreme adjustments to the adaptable parameters, showed generally poor

performance, though 1b obtained both significantly better means and superior single-run results than the

fixed-parameter PSO-DRS on the Lennard-Jones problems in most cases. This was counter-balanced
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Single−point adaption using rule 1b
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Multi−point adaption using rule 1b
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Figure 6.13: Performance of rule 1b-adapted swarms on the Lennard-Jones benchmark

by its generally poor comparative performance on the complex multimodals f4–f9. Given the observed

behaviour of this rule in rapidly increasing the rate of convergence, this poor performance on problems

with a large number of minima is to be expected.

The excellent performance of 1b on the Lennard-Jones problems was contrasted by the extremely

poor performance of rule 1a on the same set. This relationship held to some extent on the unimodal

problems, with 1b showing equal means and equal-to-superior best results on the majority of the prob-
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Figure 6.14: Performance of rule 2-adapted swarms on the Lennard-Jones benchmark

lems, while 1a was inferior to the fixed-parameter swarm for nearly all of the combinations of adapted

parameters.

Given the superior performance of the exploitation-focused rule 1b on problems with a single, pos-

sibly very shallow global optimum, it is reasonable to expect the observed opposite effect on multimodal

problems. Despite its emphasis on slow convergence, rule 1a also performed rather poorly on these

problems due to a lack of ability to settle down and optimize a single point after discovery. Rules 2 and
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Single−point adaption using rule 3
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Figure 6.15: Performance of rule 3-adapted swarms on the Lennard-Jones benchmark

3 made an effort to obtain a compromise in behaviour, and returned acceptable behaviour on the entire

suite of problems.

Despite their similar general behaviour described in the previous section, the performance of rule

3 was superior to rule 2 on all of the unimodal and multimodal problem, and very slightly inferior on

the Lennard-Jones problems. Rule 3 also gave very good performance results in comparison to the

fixed-parameter swarm, particularly on the NP+φ-only adapted swarm, where mean performance was
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Figure 6.16: Convergence rate over time for single-point adaptation

statistically equivalent all but one problem – f4, on which the fixed parameter swarm excels. Similar

comparative performance was seen for nearly all of the other rule 3-adapted swarms.

In terms of sheer performance, several of the configurations of rules and adaptive parameters pro-

duced equivalent or superior performance to the fixed-parameter PSO-DRS algorithm across the entire

benchmark. The swarms using rule 1b to adapt the number of particles performed significantly better on
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68% of Lennard-Jones trials, and equivalent on another 30%. The rule 2-adapted NP+φ and NP+K+φ

swarms were significantly better than PSO-DRS on all but a few Lennard-Jones problems, and worse on

three of the standard problems, both multi- and uni-modal.

Rule 3 produced an equivalently-performing configuration, and an improved configuration: the

adapted NP swarm was better than PSO-DRS on eighteen of the 21 Lennard-Jones and worse on a single

multimodal and a single unimodal problem, and results for the NP+φ-adapted swarm were improved for

seventeen Lennard-Jones problems, and only worse on f4.

Full results are shown in tables 6.11 – 6.15 for the swarm adapting all three parameters using rule 2,

and for the swarm adapting NP+φ using rule 3. The former is interesting because while it is significantly

worse than the fixed-parameter PSO-DRS on a few of the multimodal problems, its performance on the

Lennard-Jones class of problems is exceptional. The latter, rule 3-adapted swarm is included in these

full results because it is the best performer across the entire benchmark.

SPSO DRS DRS DRS
Adapting Fixed Fixed NP+K+φ: R2 NP+φ: R3

f1 Success rate 100% 100% 96% 100%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.0±0.0 9.9E-15±9.4E-15 0.0±0.0
Worst 0.0 0.0 4.7E-13 0.0

FEvals±StE 109253±360 76748±847 174703±15602 102079±9413
f2 Success rate 0% 0% 0% 0%

Best 8.66E-8 3.61E-5 1.16E-6 5.64E-9
Mean±StE 2.39E-6±4.86E-7 3.36E-3±1.21E-3 2.71E-3±2.04E-3 4.02±1.67

Worst 2.27E-5 5.14E-2 9.5E-2 74.0
FEvals±StE - - - -

f3 Success rate 0% 0% 0% 0%
Best 1.32E-4 2.72E-5 6.36E-3 1.30E-3

Mean±StE 2.81±0.55 8.48±1.18 11.35±1.57 15.23±3.29
Worst 14.36 33.1 66.58 80.3

FEvals±StE - - - -

Table 6.11: Results for best-performing adaptive rules vs SPSO and PSO-DRS on unimodal problems

Although these two configurations produced the best performance, both specifically and generally,

it was common to see configurations that showed much improved performance on several problems. For

example, both the rule 2- and rule 3-adapted swarms produced equivalent or better performance in more

than half of the possible configurations on the Lennard-Jones problems, and the rule 1b-adapted swarms

were equivalent or superior in all but one case. Looking strictly at best single-run cases, rule 1b-adapted

swarms did very well on the f2 unimodal, and the rule 2-adapted swarms were excellent in the majority

of configurations on the highly-complex f5. The rule 3-adapted swarms were even better in terms of

individual runs, particularly when adapting the NP parameter, where the single best run was equivalent

or superior to PSO-DRS in every case.

While performance is not the primary goal of this investigation, it is encouraging to see that im-

proved results can be obtained even with the straightforward rules and adaptations proposed and imple-

mented here. Given how these rules were able to be designed to produce specific behaviours and corre-
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SPSO DRS DRS DRS
Adapting Fixed Fixed NP+K+φ: R2 NP+φ: R3

f4 Success rate 0% 0% 0% 0%
Best 2961 829 2606 948

Mean±StE 3264±21 1576±39 3238±45 1952±72
Worst 3614 2013 3553 3079

FEvals±StE - - - -
f5 Success rate 0% 0% 0% 32%

Best 98.50 2.98 6.04E-14 0.0
Mean±StE 149.02±3.48 9.19±0.64 20.68±2.42 11.72±2.22

Worst 198.0 21.89 73.63 56.7
FEvals±StE - - - 407830±12921

f6 Success rate 20% 100% 0% 12%
Best 0.0 0.0 4.68E-9 0.0

Mean±StE 14.68±1.16 0.0±0.0 1.32E-6±7.99E-7 4.17E-2±2.94E-2
Worst 19.75 0.0 3.39E-5 1.16

FEvals±StE 239923±39688 226790±9485 - 281326±17253
f7 Success rate 98% 94% 20% 78%

Best 0.0 0.0 0.0 0.0
Mean±StE 1.48E-4±1.48E-4 4.44E-4±2.51E-4 3.55E-3±1.12E-3 2.37E-3±7.07E-4

Worst 7.4E-3 7.4E-3 3.2E-2 2.22E-2
FEvals±StE 124726±4922 70276±704 317417±18013 130082±11133

f8 Success rate 100% 96% 98% 100%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 4.15E-3±2.9E-3 5.1E-14±5.1E-14 0.0±0.0
Worst 0.0 1.04E-1 2.5E-12 0.0

FEvals±StE 128167±1107 95725±630 129594±13401 111774±9765
f9 Success rate 100% 98% 94% 86%

Best 0.0 0.0 0.0 0.0
Mean±StE 0.0±0.0 2.2E-4±2.2E-4 1.03E-10±9.45E-11 1.74E-3±6.44E-4

Worst 0.0 1.1E-2 4.71E-9 2.1E-2
FEvals±StE 118098±440 91635±454 184279±12718 138086±12368

Table 6.12: Results for best-performing adaptive rules vs SPSO and PSO-DRS on complex multimodal
problems

sponding performance, using the same guidelines established here opens up PSO-DRS for performance-

focused exploration and rule development.

6.9.3 Adaptive Framework

The PSO-DRS form of particle swarm optimization has been demonstrated in previous chapters to show

excellent performance on many problems, and clear improvements to the standard PSO algorithm. Fur-

ther improvements beyond what has been achieved on the selected benchmark are difficult to obtain,

given that PSO-DRS is reliably able to find the optimal point in 10 of the original 14 problems, and very

good points on the remaining 4. Despite this difficulty, introducing adaptive techniques via the frame-

work shown in figure 6.17 were shown to produce significantly improved performance in many cases,

alongside expected and explainable behaviour patterns.

This is the desired result of this examination, showing that PSO-DRS-driven optimization can be

easily tuned to produce superior performance, without altering any of the fundamental properties of the

algorithm. Nothing in the initialization or processing components of the algorithm was changed for the

adaptive framework, only the values of individual parameters, yet these adjustments were able to produce

very different behaviour and performance.

Despite the excellent performance of the base PSO-DRS algorithm on the assigned benchmark, this
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SPSO DRS DRS DRS
Adapting Fixed Fixed NP+K+φ: R2 NP+φ: R3

f10 Success rate 100% 98% 100% 98%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.0163±0.0163 0.0±0.0 0.0163±0.0163
Worst 0.0 0.816 0.0 0.816

FEvals±StE 13528±228 5622±122 21097±4609 6743±279
f11 Success rate 100% 98% 100% 100%

Best 0.0 0.0 0.0 0.0
Mean±StE 0.0±0.0 1.62±1.62 0.0±0.0 0.0±0.0

Worst 0.0 81.0 0.0 0.0
FEvals±StE 9313±81 6198±134 14424±7875 6546±211

f12 Success rate 86% 98% 76% 88%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.708±0.251 0.149±0.149 1.59±0.412 0.751±0.297
Worst 5.10 7.47 7.47 7.47

FEvals±StE 21751±3860 16839±1415 22225±7581 19012±1539
f13 Success rate 88% 98% 98% 96%

Best 0.0 0.0 0.0 0.0
Mean±StE 0.823±0.323 0.134±0.134 0.134±0.134 0.267±0.187

Worst 7.64 6.68 6.74 6.68
FEvals±StE 28871±12526 31861±2111 15454±823 21322±1063

f14 Success rate 90% 100% 100% 100%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.759±0.326 0.0±0.0 0.0±0.0 0.0±0.0
Worst 8.11 0.0 0.0 0.0

FEvals±StE 17690±861 25119±1795 14762±996 24129±2343

Table 6.13: Results for best-performing adaptive rules vs SPSO and PSO-DRS on simple multimodal
problems

performance cannot necessarily be expected for other applicable types of problem. While continuing

improvements to the base algorithm could be researched and applied, as has been the case with most

variations to major optimization algorithms, each of these improvements would likewise be constrained

by the same stipulation. What is more useful is a separate system for adjusting the algorithm according

to the features of the problem or problems under optimization, independent of the functioning of the

algorithm itself.

The Lennard-Jones problem, in its various configurations, provides a suite of functions on which

a fixed-parameter PSO-DRS shows relatively poor performance. By determining adaptive rules and

configurations that are able to maintain the excellent PSO-DRS performance on the other 14 optimization

problems as well as attain superior results on Lennard-Jones, it is demonstrated that PSO-DRS, itself

an extension and step beyond PSO, can be extended for general applicability to problems beyond the

standard range of optimization benchmarks.

What is important here are not the specific rules that were used to obtain good results, but the

framework of adaptability that has been established. Adjustment of the points of adaptation, NP, K, and

φ, is shown to have a measurable effect on the ability of the swarm to converge to an optimum point. The

rules used here are examples of behaviours that can be implanted into the swarm to effect a dynamic,

responsive convergence rate throughout the entire process of optimization.

This combination of concept and application represents a reasoned approach to further development

of the PSO-DRS algorithm. Rather than simply presenting a new variation to the basic fixed-parameter
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Figure 6.17: Adaptive PSO-DRS framework

algorithm without examining the possible methods of implementing changes, defining the points of adap-

tation and demonstrating the effects of a spectrum of adaptive rules allowed for a better understanding

of the resulting behaviour. The effects of these behaviours could then be seen in the application of the

new swarm configurations in the performance results: slow-converging rule 1a-adapted swarms were

less effective than fast-converging rule 1b-adapted swarms, while rule 2- and rule 3- adapted swarms

compromised between the two and showed the best performance overall.

The improved ability of many of the adapted swarms using these example rules on both the standard

and the extended problem space is evidence that this method of adaptation is part of a fruitful area of

research. Using PSO-DRS as a base, we can apply conditional adaptations using this framework to build

optimizers as needed that are suited to specific circumstances and practicalities at will. This valuable
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avenue of development broadens the range of PSO research to embrace diverse applications while re-

taining all of the core features of the algorithm that have made it the popular, outstanding optimizer that

it is today.

6.10 Conclusions
This chapter has focused on the development of an framework for adaptively adjusting the parameters,

and hence the behaviour, of the PSO-DRS algorithm. These adaptations are determined by pre-defined

rules that are designed to adjust the parameters based on conditions taken from reported performance at

points of the optimization process that vary from simply whether or not performance is improving, to

how quickly the improvement is taking place, if at all.

As a first step, the adaptable parameters of the swarm algorithm were defined. These consisted of

the swarm-level settings of NP and K, and the particle-level setting φ. As these three parameters control

the composition of the swarm, the interaction between individual particles, and the movement of those

particles, their values are integral to the functioning of the algorithm.

The performance of the adapted form of PSO-DRS was compared to that of SPSO and the fixed-

parameter form of PSO-DRS. Two approaches were taken: single-parameter adaptation, and multiple-

parameter adaptation. On the benchmark previously defined in chapter 3 and used throughout the work,

the adaptive system was able in several configurations to obtain results equivalent to those of the best

fixed-parameter PSO-DRS algorithm without the need for pre-selecting one, two, or all three of the

parameters.

Another, potentially more significant advantage of this framework lies in its extension of the range

of problems that PSO-DRS can optimize effectively. The Lennard-Jones problem was introduced, and

it was shown how the adaptive framework brought about great improvements to PSO-DRS performance

across all configurations of the problem.

Through examination of the behaviour and performance of the adapted PSO-DRS swarm algorithm,

we can conclude that the framework developed here improves both the performance and the applicability

of PSO-DRS.
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Random SPSO DRS DRS DRS
Adapting Search Fixed Fixed NP+K+φ: R2 NP+φ: R3

LJ2 Success rate 0% 100% 100% 100% 100%
Best 1.06E-7 0.0 0.0 0.0 0.0

Mean±StE 0.118±0.023 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Worst 0.591 0.0 0.0 0.0 0.0

FEvals±StE - 8979±245 7601±753 8807±932 7196±745
LJ3 Success rate 0% 100% 22% 98% 80%

Best 0.436 0.0 0.0 0.0 0.0
Mean±StE 1.62±0.059 0.0±0.0 3.2E-6±1.47E-6 1.4E-7±1.4E-7 1.5E-6±8.5E-7

Worst 2.22 0.0 7.2e-5 6.98E-6 3.78E-5
FEvals±StE - 16208±239 417959±36851 64379±11222 101060±18613

LJ4 Success rate 0% 100% 20% 98% 92%
Best 2.23 0.0 0.0 0.0 0.0

Mean±StE 4.05±0.074 0.0±0.0 2.7E-5±1.5E-5 5.9E-6±5.9E-6 1.8E-5±1.8E-5
Worst 4.97 0.0 7.2E-4 2.97E-4 8.9E-4

FEvals±StE - 35990±1312 361428±27471 86547±12957 119381±12254
LJ5 Success rate 0% 100% 6% 96% 84%

Best 9.1 0.0 0.0 0.0 0.0
Mean±StE 9.1±5.3E-7 0.0±0.0 1.2E-3±3.9E-4 1.5E-2±1.3E-2 8.4E-6±5.1E-6

Worst 9.1 0.0 1.4E-2 6.3E-1 2.25E-4
FEvals±StE - 58204±1921 522557±57857 83811±15056 187843±13722

LJ6 Success rate 0% 2% 0% 10% 2%
Best 7.22 0.0 3.2E-4 0.0 0.0

Mean±StE 9.44±0.102 0.4±8.2E-3 0.335±0.023 0.406±0.034 0.371±0.02
Worst 10.73 0.409 0.53 1.61 0.66

FEvals±StE - 387432±0 - 69145±11436 168239±0
LJ7 Success rate 0% 40% 0% 42% 8%

Best 10.41 0.0 2.3E-3 0.0 0.0
Mean±StE 12.67±0.103 0.541±0.098 0.779±0.091 0.525±0.067 0.476±0.079

Worst 13.69 4.2 2.99 1.52 1.97
FEvals±StE - 152420±19186 - 115489±27942 346136±72266

LJ8 Success rate 0% 78% 0% 50% 12%
Best 19.82 0.0 6.4E-3 0.0 0.0

Mean±StE 19.82±5.9E-7 0.118±0.044 1.32±0.133 0.456±0.128 0.522±0.137
Worst 19.82 1.04 4.06 5.87 5.23

FEvals±StE - 240278±18703 - 107250±10164 333654±75485
LJ9 Success rate 0% 28% 0% 12% 4%

Best 16.54 0.0 1.15 0.0 0.0
Mean±StE 18.96±0.136 0.865±0.116 3.89±0.2 1.04±0.075 1.57±0.287

Worst 20.41 4.35 7.92 2.03 8.73
FEvals±StE - 239197±36321 - 166648±79646 316426±49634

LJ10 Success rate 0% 0% 0% 0% 0%
Best 19.63 1.1E-4 0.143 1.1E-7 1.1E-7

Mean±StE 22.69±0.17 1.96±0.22 6.33±0.32 1.93±0.425 2.54±0.354
Worst 25.65 6.39 11.33 14.98 11.76

FEvals±StE - - - - -
LJ11 Success rate 0% 10% 0% 6% 0%

Best 22.95 0.0 5.32 0.0 0.002
Mean±StE 26.44±0.197 2.67±0.35 9.9±0.3 2.32±0.34 3.31±0.32

Worst 29.02 11.15 13.93 15.83 8.63
FEvals±StE - 274779±48157 - 299412±43412 -

Table 6.14: Results for best-performing adaptive rules vs SPSO and PSO-DRS on Lennard-Jones prob-
lems 2–11
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Random SPSO DRS DRS DRS
Adapting Search Fixed Fixed NP+K+φ: R2 NP+φ: R3

LJ12 Success rate 0% 0% 0% 0% 0%
Best 26.05 1.72 10.78 4.4E-7 1.73

Mean±StE 31.8±0.323 5.17±0.72 14.8±0.28 3.74±0.642 6.92±0.78
Worst 37.41 36.97 19.36 26.0 21.05

FEvals±StE - - - - -
LJ13 Success rate 0% 0% 0% 4% 0%

Best 33.83 3.71 13.73 0.0 3.89
Mean±StE 38.52±0.411 10.96±1.46 20.55±0.36 6.03±0.603 9.57±0.8

Worst 44.33 43.33 24.28 27.34 26.08
FEvals±StE - - - 326334±62880 -

LJ14 Success rate 0% 0% 0% 0% 0%
Best 35.08 2.88 18.8 2.17E-7 4.01

Mean±StE 42.03±0.567 19.32±2.55 24.15±0.31 6.6±0.61 13.93±1.15
Worst 47.85 46.85 29.8 28.14 29.98

FEvals±StE - - - - -
LJ15 Success rate 0% 0% 0% 2% 0%

Best 39.93 3.09 23.14 0.0 1.91
Mean±StE 47.86±0.589 34.36±2.75 28.32±0.32 6.1±0.491 15.44±1.28

Worst 52.32 51.32 32.09 17.1 34.03
FEvals±StE - - - 179019±0 -

LJ16 Success rate 0% 0% 0% 0% 0%
Best 45.20 0.912 25.8 1.7E-6 2.5

Mean±StE 53.6±0.581 39.08±2.88 32.44±0.35 7.41±0.542 18.09±1.52
Worst 56.82 55.82 37.62 20.56 40.81

FEvals±StE - - - - -
LJ17 Success rate 0% 0% 0% 0% 0%

Best 42.02 4.02 30.52 0.011 4.13
Mean±StE 59.81±0.53 49.69±2.8 37.13±0.41 8.12±0.972 22.53±1.63

Worst 61.32 60.32 42.2 43.25 44.94
FEvals±StE - - - - -

LJ18 Success rate 0% 0% 0% 0% 0%
Best 56.71 6.57 38.82 0.246 1.68

Mean±StE 65.78±0.329 58.45±2.54 43.23±0.26 12.96±1.36 25.79±1.88
Worst 66.53 65.53 47.29 50.58 50.57

FEvals±StE - - - - -
LJ19 Success rate 0% 0% 0% 0% 0%

Best 61.93 19.05 44.26 3.55 3.25
Mean±StE 72.03±0.292 69.43±1.05 49.28±0.34 14.08±0.94 25.12±1.99

Worst 72.66 71.66 53.42 31.78 53.13
FEvals±StE - - - - -

LJ20 Success rate 0% 0% 0% 0% 0%
Best 77.16 8.23 45.13 3.23 9.4

Mean±StE 77.18±2.99E-4 72.8±1.6 53.59±0.41 16.78±1.32 34.55±2.2
Worst 77.18 76.18 58.92 61.49 60.17

FEvals±StE - - - - -
LJ26 Success rate 0% 0% 0% 0% 0%

Best 108.3 93.11 80.37 13.04
Mean±StE 108.3±2.99E-4 103.02±0.5 84.92±0.29 31.63±1.89 57.86±2.61

Worst 108.3 107.32 88.98 91.88 90.99
FEvals±StE - - - - -

LJ38 Success rate 0% 0% 0% 0% 0%
Best 173.7 141.6 145.2 39.1 81.25

Mean±StE 173.9±0.004 162.5±0.97 150.3±0.26 75.3±2.76 127.06±3.29
Worst 173.9 172.9 153.8 152.95 154.31

FEvals±StE - - - - -

Table 6.15: Results for best-performing adaptive rules vs SPSO and PSO-DRS on Lennard-Jones prob-
lems 12–20, 26, and 38



Chapter 7

Conclusions

7.1 Future Work
As with any research, many potential directions for future work beyond the scope presented here became

apparent during the course of this thesis. A summary of these possibilities are summarized in this section.

Updates to the Standard PSO

While the advances to the original PSO algorithm[1, 2] necessitated the definition of a new standard form

of the algorithm, as described in chapter 3, there should of course be no illusions that this standard is any

more permanent than the original. New advances are constantly proposed and published that extend and

improve PSO – the more generic of these can eventually become part of the canon, and contribute to the

formulation of an updated standard.

These advances could take many forms, from improved settings for the parameters χ, c1, and c2, to

a more analytical approach to determining the optimal number of particles in the swarm. The standard

defined here drew from major, well-known publications and empirical results in its method of combining

advances into a cohesive algorithm, but there should be no doubt that even these major steps forward

can be overtaken by research building on their work. When those new advances appear, an updated

standard should be expected to take them into account in pushing forward the canonical form of PSO for

representation in the optimization community.

Full Sampling Distribution of PSO-DR

While the first two moments, corresponding to the mean and the variance, of the general PSO-DR sam-

pling distribution were derived here in chapter 5, the method introduced by Poli[76, 77, 78] and used

in this work contains no restrictions on determining higher moments. Accordingly, Poli determined the

first four moments of a PSO equivalent to the standard, adding skew and kurtosis, and suggested that the

method could potentially be used to determine the full sampling distribution.

Given the identical nature of the stability regions for the mean and variance of PSO-DR, it would be

particularly interesting to see whether this extends to the higher moments. Using Poli’s method makes
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it relatively straightforward to extend the derivation to encompass further moments, and if the noted

similarities hold for all higher moments, the full sampling distribution of PSO-DR could be exactly

obtained.

Improved and Specialized Adaptive Rules

The four adaptive rules used in chapter 6 were used both as a prototypical system of adaptation, and as

evidence of the applicability of the framework for optimizing previously unsuitable problem spaces, in

this case the Lennard-Jones set. These rules are given as examples, not as integral parts of the adaptive

PSO-DRS algorithm. Nothing prevents their replacement with alternate rules intended for any desired

direction of research, be it into performance, behaviour, or some other aspect of optimization.

One of the major goals of this thesis has been to introduce an adaptive system that can be used in

many contexts without necessitating any alterations to the core PSO/PSO-DR/PSO-DRS functionality.

The nature of the adaptive rules allows them to be constructed and applied to the algorithm independently

of the rest of the optimization process. With this ability, the development of new adaptive rules is the

obvious next step.

7.2 Summary
The future for development of the PSO algorithm is bright and wide open; the concept and field are

still relatively new, leaving many areas as yet unexplored. New publications appear with nearly every

conference and journal on evolutionary algorithms and swarm intelligence. A cursory Internet search

reveals articles and tutorials aimed at all levels of users, lecture notes for undergraduate algorithms

courses, and thousands of publications all referring back to the original proposal. This interest stems

from both the excellent performance over many types of problems, and the attractive familiarity of the

concepts of swarms. Even the layman can be quickly educated on the functioning of a swarm optimizer

by means of real-world biological comparisons.

In section 1.3, the chief objective of this thesis was established as:

. . . to present the concepts and implementations involved in simplifying the established

PSO algorithm, allowing for the introduction of an adaptive aspect that is broadly applicable

and unreliant on alterations to the core algorithm.

This goal has been achieved by means of a process of iteratively building on the original PSO

formulation[1, 2], as outlined in this summary.

While many interesting and valuable advances have been made in the field, much of the work that

has been done has consisted of minor variations to the functionality of the algorithm. This is important

research, expanding the literature and deepening the pool of research, but what is truly valuable is the less

common study that examines the fundamental components of the concept and builds on them. Alternative



158 Chapter 7. Conclusions

topologies, the effects of inertia weight and constriction on preventing divergence, mathematical stability

analyses, and the like were all such advances, taking the original work and stepping forward with it

into new formulations that must now for the sake of modernity be applied to any use of the algorithm.

Each of these significantly improves the functioning of the swarm, and by collecting the most important

components into a single new standard formulation, we not only obtain much-improved performance,

we also ensure that future research will be working from the same single origin, which is vital for the

development of new, similarly fundamental advances.

Simplification of the optimization process is one such advance. A standard formulation is a be-

ginning, not the final word on PSO. Questions remain about the functionality and behaviour of the

algorithm, some of which are made more difficult to answer by the complex interactions between com-

ponents at both the levels of individual particles and the swarm as a whole. Multiplicative stochasticity

leads to velocity bursts, which appear unlikely to benefit the search for improved solutions, even hin-

dering it by means of wasted time and processing that could be better applied elsewhere. The previous

velocity component, already suspected of being vestigial from the time that PSO was used to simulate

graphically-appealing swarm simulations, can be removed. Under appropriate circumstances, the cog-

nitive component of the update equations is unnecessary and can be removed, leading to a more social,

better performing optimizer.

The modifications made here to PSO in the development of the PSO-DRS algorithm have not been

concerned with bolting on new functionality or behaviour, but with actively removing and simplifying

components of the algorithm down to a state where the same functionality and applicability remain,

but those properties that have led to both conceptual and practical complexity have been stripped away.

Performance remains equivalent to the standard PSO formulation, and even significantly improved in

multiple instances, specifically the very difficult highly multimodal problems f4–f6 on which the stan-

dard algorithm often struggles.

With its first-order update equation, basic additive stochasticity, and single point of attraction, PSO-

DRS is immediately accessible for a thorough mathematical analysis, which was used to show the proof

of stability for appropriate selection of φ. This single tunable parameter caters to adaptability, obviating

the need to balance multiple variables in order to find combinations that fall within the region of stability.

Such adaptation is made possible by the introduction of a conceptual framework that allows for

quick development and testing of systems with changeable, adaptive behaviour. The clearly-defined

points of adaptation at both the swarm and particle levels, along with pluggable rules or sets of rules for

adjusting these parameters based on desired conditions, is both uncomplicated enough to be reproducible

by any interested researcher, and open-ended enough to allow for nearly any sort of behaviour to be made

a fundamental part of the optimization process.

Rather than unalterable, rigidly applied adaptations, this model encourages exploration of the ef-
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fects of different approaches to adaptability. The benefits of this are seen by way of the significantly

improved performance of various types of adapted PSO-DRS algorithms on a benchmark outside the

typical range of global optimization testing, the Lennard-Jones atomic clustering problems. While the

fixed-parameter PSO-DRS swarm is able to show excellent performance on the standard benchmark,

results are very poor for all but the simplest atomic configurations. By tuning the parameters adaptively,

however, we were able to obtain far improved performance on the majority of these problems without the

need for a specially-constructed static formulation. The generic rules used to good effect here are only a

small, demonstrative sample of the possible sets of conditions for tuning swarm and particle parameters,

possibilities limited only by the range of applications.

Just as with the definition of a standard formulation of the PSO algorithm, what has been developed

with this framework for adaptation is just a starting point for research into the ways that the concept can

be extended and applied to many and various types of problems. By basing the adaptations of parameters

on the rate of convergence, the effects of altering these settings are understandable and, just as impor-

tantly, predictable. The pluggable nature of the conditions for adaptation and their effects on the swarm

opens up a new and separate area for research outside of the underlying PSO-DRS algorithm. Rather

than fundamentally altering the algorithm and increasing the complexity or narrowing the applicability,

rules can now be developed specifically for certain types of problems and introduced into the behaviour

of the swarm while retaining the defining characteristics of PSO.

All of the concepts and features explored in this work have led to something that is not a reimagining

of PSO, but a refinement – a new conceptual and practical framework that embraces the ground-breaking

past research that has brought the field to its present state of popularity and prominence, while moving it

forward on the path to a future as an adaptive system of optimization. This direction is one that can and

will be explored for the future development of particle swarm optimization.
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f1 Success rate 100% 0% 100% 100%
Best 0.0 1.21E-13 0.0 0.0

Mean±StE 0.0±0.0 1.29E-12±2.04E-13 0.0±0.0 0.0±0.0
Worst 0.0 6.91E-12 0.0 0.0

FEvals±StE 76748±847 - 136301±2686 145548±8414

f2 Success rate 0% 0% 0% 0%
Best 3.61E-5 105.6 9.06 601.3

Mean±StE 3.36E-3±1.21E-3 302.6±15.74 85.51±10.64 2445±120.7
Worst 5.14E-2 539.2 311.7 4514

FEvals±StE - - - -

f3 Success rate 0% 0% 0% 0%
Best 2.72E-5 7.64 4.32E-4 9.82

Mean±StE 8.48±1.18 22.72±1.32 4.44±0.51 25.67±1.99
Worst 33.1 69.3 11.21 105.8

FEvals±StE - - - -

Table A.1: Results for single-point adaptive DRS using rule 1a on unimodal problems

PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f4 Success rate 0% 0% 0% 0%
Best 829 1692 2369 2053

Mean±StE 1576±39 2004±17 3300±184 2975±82
Worst 2013 2257 7063 4207

FEvals±StE - - - -

f5 Success rate 0% 0% 0% 0%
Best 2.98 5.49 8.95 88.79

Mean±StE 9.19±0.64 19.5±0.82 17.21±0.5 117.6±2.07
Worst 21.89 30.88 27.86 152.3

FEvals±StE - - - -

f6 Success rate 100% 0% 100% 88%
Best 0.0 6.65E-7 0.0 0.0

Mean±StE 0.0±0.0 4.69E-6±4.52E-7 0.0±0.0 1.09E-7±1.08E-7
Worst 0.0 1.36E-5 0.0 5.4E-6

FEvals±StE 226790±9485 - 190987±1121 505540±5523

f7 Success rate 94% 0% 90% 58%
Best 0.0 2.56E-11 0.0 0.0

Mean±StE 4.44E-4±2.51E-4 3.87E-10±7.03E-11 7.4E-4±3.17E-4 2.99E-4±2.07E-4
Worst 7.4E-3 2.34E-9 7.4E-3 7.4E-3

FEvals±StE 70276±704 - 56260±212 276203±27278

f8 Success rate 96% 0% 100% 100%
Best 0.0 4.13E-9 0.0 0.0

Mean±StE 4.15E-3±2.9E-3 6.45E-8±2.01E-8 0.0±0.0 0.0±0.0
Worst 0.104 9.79E-7 0.0 0.0

FEvals±StE 95725±630 - 168130±2494 304209±4092

f9 Success rate 98% 0% 92% 100%
Best 0.0 2.47E-8 0.0 0.0

Mean±StE 2.2E-4±2.2E-4 1.76E-7±3.08E-8 8.79E-4±4.26E-4 0.0±0.0
Worst 1.1E-2 1.01E-6 1.1E-2 0.0

FEvals±StE 91635±454 - 164769±2055 297647±5891

Table A.2: Results for single-point adaptive DRS using rule 1a on complex multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f10 Success rate 98% 100% 82% 94%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0163±0.0163 0.0±0.0 0.15±0.045 0.049±0.028
Worst 0.816 0.0 0.816 0.816

FEvals±StE 5622±122 8698±509 13445±1552 58580±11946

f11 Success rate 98% 100% 92% 100%
Best 0.0 0.0 0.0 0.0

Mean±StE 1.62±1.62 0.0±0.0 6.48±3.14 0.0±0.0
Worst 81.0 0.0 81.0 0.0

FEvals±StE 6198±134 16388±477 6100±456 7478±334

f12 Success rate 98% 100% 60% 66%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.149±0.149 0.0±0.0 2.77±0.492 2.35±0.475
Worst 7.47 0.0 7.52 7.47

FEvals±StE 16839±1415 112444±14197 30448±10859 22067±7548

f13 Success rate 98% 100% 62% 90%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.134±0.134 0.0±0.0 2.42±0.45 0.506±0.246
Worst 6.68 0.0 7.65 6.68

FEvals±StE 31861±2111 88428±3971 29395±13917 69831±11918

f14 Success rate 100% 100% 80% 98%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.0±0.0 1.31±0.378 4.26E-16±4.26E-16
Worst 0.0 0.0 7.79 2.13E-14

FEvals±StE 25119±1795 78361±3099 12524±720 63323±11173

Table A.3: Results for single-point adaptive DRS using rule 1a on simple multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP K PHI

LJ2 Success 100% 6% 0% 4%
Best 0.0 0.0 1.08E-13 0.0

Mean±StE 0.0±0.0 2.51E-11±6.52E-12 4.60E-10±1.88E-10 1.90E-10±4.85E-11
Worst 0.0 2.34E-10 7.85E-09 1.69E-09

Fevals±StE 7601±753 379856±125095 - 258896±98697

LJ3 Success 22% 0% 0% 0%
Best 0.0 4.35E-09 6.76E-05 7.40E-05

Mean±StE 3.20E-06±1.47E-06 5.37E-06±8.77E-07 0.003±3.13E-04 0.002±1.95E-04
Worst 7.25E-05 2.29E-05 0.010 0.007

Fevals±StE 417959±36851 - - -

LJ4 Success 20% 0% 2% 0%
Best 0.0 5.66E-06 0.0 0.001

Mean±StE 2.70E-05±1.46E-05 3.21E-04±6.18E-05 0.322±0.027 0.154±0.016
Worst 7.17E-04 0.002 0.678 0.536

Fevals±StE 361428±27471 - 453500±0 -

LJ5 Success 6% 0% 0% 0%
Best 0.0 1.60E-04 0.950 0.315

Mean±StE 0.001±3.88E-04 0.023±0.005 1.63±0.048 1.31±0.069
Worst 0.014 0.174 2.46 2.32

Fevals±StE 522557±57857 - - -

LJ6 Success 0% 0% 0% 0%
Best 3.22E-04 0.334 2.75 1.33

Mean±StE 0.335±0.023 0.663±0.037 3.78±0.068 3.61±0.104
Worst 0.530 1.44 4.63 4.94

Fevals±StE - - - -

LJ7 Success 0% 0% 0% 0%
Best 0.002 0.606 4.53 4.82

Mean±StE 0.779±0.091 1.76±0.076 6.37±0.084 6.94±0.124
Worst 2.99 3.47 7.30 8.37

Fevals±StE - - - -

LJ8 Success 0% 0% 0% 0%
Best 0.006 1.38 7.00 8.00

Mean±StE 1.32±0.133 3.57±0.165 8.70±0.091 9.89±0.098
Worst 4.06 6.58 9.99 11.30

Fevals±StE - - - -

LJ9 Success 0% 0% 0% 0%
Best 1.15 3.69 11.24 12.28

Mean±StE 3.89±0.203 6.71±0.182 12.57±0.092 13.74±0.120
Worst 7.92 9.48 14.07 15.65

Fevals±StE - - - -

LJ10 Success 0% 0% 0% 0%
Best 0.143 6.83 13.80 15.41

Mean±StE 6.33±0.319 10.26±0.205 16.49±0.110 17.77±0.127
Worst 11.33 13.25 18.13 19.47

Fevals±StE - - - -

LJ11 Success 0% 0% 0% 0%
Best 5.32 9.18 19.04 18.20

Mean±StE 9.90±0.300 13.40±0.212 20.34±0.108 21.54±0.130
Worst 13.93 16.30 21.93 22.75

Fevals±StE - - - -

Table A.4: Results for single-point adaptive DRS using rule 1a on Lennard-Jones problems 2–11
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP K PHI

LJ12 Success 0% 0% 0% 0%
Best 10.78 10.98 23.18 23.62

Mean±StE 14.80±0.282 17.78±0.307 25.50±0.133 26.73±0.137
Worst 19.36 21.24 27.26 28.79

Fevals±StE - - - -

LJ13 Success 0% 0% 0% 0%
Best 13.73 20.35 28.40 30.38

Mean±StE 20.55±0.366 24.82±0.297 31.81±0.157 32.66±0.138
Worst 24.28 28.11 34.76 34.22

Fevals±StE - - - -

LJ14 Success 0% 0% 0% 0%
Best 18.80 22.16 32.97 32.86

Mean±StE 24.15±0.315 27.83±0.231 35.35±0.163 35.85±0.181
Worst 29.80 31.57 38.82 37.99

Fevals±StE - - - -

LJ15 Success 0% 0% 0% 0%
Best 23.14 28.94 37.07 36.90

Mean±StE 28.32±0.322 32.27±0.246 39.62±0.182 40.11±0.157
Worst 32.09 35.60 43.22 41.85

Fevals±StE - - - -

LJ16 Success 0% 0% 0% 0%
Best 25.80 31.66 41.63 41.96

Mean±StE 32.45±0.353 36.49±0.260 44.56±0.162 44.53±0.116
Worst 37.62 39.80 47.35 46.35

Fevals±StE - - - -

LJ17 Success 0% 0% 0% 0%
Best 30.52 38.06 42.02 42.02

Mean±StE 37.13±0.408 41.13±0.239 48.81±0.209 48.42±0.236
Worst 42.20 44.76 51.82 51.14

Fevals±StE - - - -

LJ18 Success 0% 0% 0% 0%
Best 38.82 36.76 51.05 51.26

Mean±StE 43.23±0.261 45.93±0.371 54.42±0.169 53.84±0.155
Worst 47.29 49.63 57.22 56.27

Fevals±StE - - - -

LJ19 Success 0% 0% 0% 0%
Best 44.26 47.54 57.39 55.56

Mean±StE 49.28±0.336 51.66±0.284 60.90±0.173 59.57±0.167
Worst 53.42 55.37 63.33 61.76

Fevals±StE - - - -

LJ20 Success 0% 0% 0% 0%
Best 45.13 52.94 61.79 60.54

Mean±StE 53.59±0.409 56.70±0.214 65.10±0.217 63.70±0.185
Worst 58.92 59.41 68.31 66.33

Fevals±StE - - - -

LJ26 Success 0% 0% 0% 0%
Best 80.37 80.84 89.55 87.79

Mean±StE 84.92±0.285 87.33±0.306 96.25±0.277 93.23±0.221
Worst 88.98 90.69 99.04 95.58

Fevals±StE - - - -

LJ38 Success 0% 0% 0% 0%
Best 145.2 146.6 153.0 143.7

Mean±StE 150.3±0.265 152.5±0.314 161.2±0.323 155.4±0.349
Worst 153.8 156.3 164.7 158.9

Fevals±StE - - - -

Table A.5: Results for single-point adaptive DRS using rule 1a on Lennard-Jones problems 12–20, 26,
and 38
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f1 Success rate 100% 100% 0% 10% 0%
Best 0.0 0.0 7.08E-9 0.0 1.36E-5

Mean±StE 0.0±0.0 0.0±0.0 7.41E-7±1.51E-7 27.53±12.95 67.95±29.86
Worst 0.0 0.0 4.84E-6 592.9 1028

FEvals±StE 76748±847 164468±1602 - 52258±1842 -

f2 Success rate 0% 0% 0% 0% 0%
Best 3.61E-5 1.82 1885 29130 24374

Mean±StE 3.36E-3±1.21E-3 14.44±1.61 5708±221 46183±1476 45266±1392
Worst 5.14E-2 68.92 9961 68635 65526

FEvals±StE - - - - -

f3 Success rate 0% 0% 0% 0% 0%
Best 2.72E-5 0.426 25.22 239 132

Mean±StE 8.48±1.18 47.76±4.67 28.85±0.395 1.58E6±8.09E5 4.78E6±1.96E6
Worst 33.1 89.56 38.59 2.7E7 6.38E7

FEvals±StE - - - - -

Table A.6: Results for multi-point adaptive DRS using rule 1a on unimodal problems

PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f4 Success rate 0% 0% 0% 0% 0%
Best 829 2961 2396 8900 8717

Mean±StE 1576±39 4848±227 2917±51 9711±48 9456±43
Worst 2013 7286 3687 10505 10018

FEvals±StE - - - - -

f5 Success rate 0% 0% 0% 0% 0%
Best 2.98 87.94 118.1 227.0 220.7

Mean±StE 9.19±0.64 138.3±2.83 138.1±1.37 343.4±4.62 341.1±4.1
Worst 21.89 190.2 156.1 398.3 383.3

FEvals±StE - - - - -

f6 Success rate 100% 0% 0% 0% 0%
Best 0.0 7.97E-10 4.35E-5 15.55 18.09

Mean±StE 0.0±0.0 3.68E-9±3.14E-10 3.03E-4±3.56E-5 19.0±0.14 19.42±0.05
Worst 0.0 9.93E-9 1.2E-3 20.4 20.05

FEvals±StE 226790±9485 - - - -

f7 Success rate 94% 98% 0% 0% 0%
Best 0.0 0.0 5.43E-6 1.41E-3 2.82E-3

Mean±StE 4.44E-4±2.51E-4 1.48E-4±1.48E-4 1.36E-3±3.98E-4 4.62±2.75 8.52±4.04
Worst 7.4E-3 7.4E-3 1.79E-2 135.1 154.6

FEvals±StE 70276±704 333355±2128 - - -

f8 Success rate 96% 0% 0% 0% 0%
Best 0.0 9.76E-11 3.33E-7 21.61 6.3E3

Mean±StE 4.15E-3±2.9E-3 2.99E-6±1.36E-6 1.87E-4±6.13E-5 6.19E7±7.65E6 7.59E7±6.16E6
Worst 1.04E-1 5.71E-5 3.02E-3 1.73E8 1.81E8

FEvals±StE 95725±630 - - - -

f9 Success rate 98% 0% 0% 0% 0%
Best 0.0 4.24E-10 2.1E-5 33.56 1.54E4

Mean±StE 2.2E-4±2.2E-4 2.33E-5±1.89E-5 1.4E-3±3.4E-4 1.45E8±1.81E7 1.91E8±1.71E7
Worst 0.011 9.35E-4 1.3E-2 6.14E8 5.1E8

FEvals±StE 91635±454 - - - -

Table A.7: Results for multi-point adaptive DRS using rule 1a on complex multimodal problems



166 Appendix A. Results tables

PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f10 Success rate 98% 88% 98% 34% 20%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 1.6E-2±1.6E-2 9.8E-3±3.8E-2 3.2E-16±3.2E-16 2.4E-1±7.6E-2 1.1E-13±2.9E-14
Worst 0.816 0.816 1.58E-14 3.14 1.08E-12

FEvals±StE 5622±122 21748±1705 123369±17826 198276±23250 275697±26338

f11 Success rate 98% 96% 100% 88% 98%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 1.62±1.62 2.30±1.74 0.0±0.0 8.42±3.47 1.62±1.62
Worst 81.0 81.0 0.0 81.0 81.0

FEvals±StE 6198±134 18123±1257 12992±695 12833±5482 25968±2268

f12 Success rate 98% 64% 86% 58% 62%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.149±0.149 2.45±0.48 2.1E-7±2.1E-7 2.80±0.48 1.70±0.421
Worst 7.47 7.52 1.05E-5 7.47 7.52

FEvals±StE 16839±1415 62637±14066 104590±20282 13148±1301 100888±19675

f13 Success rate 98% 76% 100% 60% 72%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.134±0.134 1.19±0.34 0.0±0.0 2.42±0.43 1.13±0.286
Worst 6.68 7.84 0.0 7.64 7.64

FEvals±StE 31861±2111 78885±11785 89895±7795 47855±17148 86769±6290

f14 Success rate 100% 86% 100% 58% 88%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.656±0.25 0.0±0.0 2.62±0.45 0.645±0.279
Worst 0.0 8.11 0.0 8.11 7.81

FEvals±StE 25119±1795 56843±2476 93287±6645 17441±396 101840±9686

Table A.8: Results for multi-point adaptive DRS using rule 1a on simple multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP+K NP+PHI K+PHI NP+K+PHI

LJ2 Success 100% 0% 0% 0% 0%
Best 0.0 1.70E-13 9.83E-14 3.81E-11 1.01E-12

Mean±StE 0.0±0.0 3.9E-10±7.5E-11 4.4E-10±1.5E-10 2.1E-07±8.0E-08 4.0E-07±1.3E-07
Worst 0.0 2.28E-09 6.68E-09 2.92E-06 4.56E-06

Fevals±StE 7601±753 - - - -

LJ3 Success 22% 0% 0% 0% 0%
Best 0.0 2.68E-04 1.67E-04 0.024 0.024

Mean±StE 3.2E-06±1.5E-06 0.006±6.4E-04 0.003±3.0E-04 0.140±0.019 0.234±0.025
Worst 7.25E-05 0.022 0.012 0.851 0.774

Fevals±StE 417959±36851 - - - -

LJ4 Success 20% 0% 0% 0% 0%
Best 0.0 0.137 0.039 1.47 1.25

Mean±StE 2.7E-05±1.5E-05 0.514±0.025 0.245±0.017 2.62±0.067 2.82±0.055
Worst 7.17E-04 0.942 0.608 3.35 3.41

Fevals±StE 361428±27471 - - - -

LJ5 Success 6% 0% 0% 0% 0%
Best 0.0 1.10 0.413 4.40 3.92

Mean±StE 0.001±3.9E-04 1.88±0.054 1.61±0.060 5.55±0.077 5.40±0.073
Worst 0.014 3.01 2.67 6.38 6.17

Fevals±StE 522557±57857 - - - -

LJ6 Success 0% 0% 0% 0% 0%
Best 3.22E-04 1.89 2.69 7.22 6.64

Mean±StE 0.335±0.023 4.19±0.075 4.43±0.092 8.73±0.076 8.42±0.088
Worst 0.530 5.08 5.75 9.57 9.57

Fevals±StE - - - - -

LJ7 Success 0% 0% 0% 0% 0%
Best 0.002 5.67 6.11 10.12 10.29

Mean±StE 0.779±0.091 7.14±0.077 7.52±0.091 12.05±0.093 11.65±0.083
Worst 2.99 8.12 8.83 12.96 12.93

Fevals±StE - - - - -

LJ8 Success 0% 0% 0% 0% 0%
Best 0.006 8.35 9.10 12.29 12.29

Mean±StE 1.32±0.133 9.89±0.097 10.65±0.078 14.87±0.096 14.34±0.106
Worst 4.06 11.38 11.72 16.18 15.41

Fevals±StE - - - - -

LJ9 Success 0% 0% 0% 0% 0%
Best 1.15 11.80 12.34 16.54 16.07

Mean±StE 3.89±0.203 13.89±0.113 14.48±0.109 18.76±0.118 17.97±0.111
Worst 7.92 15.73 16.01 20.33 19.81

Fevals±StE - - - - -

LJ10 Success 0% 0% 0% 0% 0%
Best 0.143 15.65 17.35 19.63 18.80

Mean±StE 6.33±0.319 17.80±0.111 18.77±0.088 22.38±0.146 21.49±0.145
Worst 11.33 19.76 20.02 24.34 23.05

Fevals±StE - - - - -

LJ11 Success 0% 0% 0% 0% 0%
Best 5.32 19.81 20.39 22.95 21.06

Mean±StE 9.90±0.300 22.17±0.142 22.36±0.129 26.10±0.163 25.28±0.169
Worst 13.93 24.26 24.14 27.83 27.37

Fevals±StE - - - - -

Table A.9: Results for multi-point adaptive DRS using rule 1a on Lennard-Jones problems 2–11
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP+K NP+PHI K+PHI NP+K+PHI

LJ12 Success 0% 0% 0% 0% 0%
Best 10.78 24.42 24.87 26.05 26.05

Mean±StE 14.80±0.282 27.80±0.138 27.59±0.116 31.08±0.199 29.78±0.175
Worst 19.36 29.54 29.00 33.43 32.06

Fevals±StE - - - - -

LJ13 Success 0% 0% 0% 0% 0%
Best 13.73 32.66 29.83 33.83 33.83

Mean±StE 20.55±0.366 34.22±0.107 33.71±0.147 36.96±0.181 36.02±0.163
Worst 24.28 36.26 35.64 38.93 38.40

Fevals±StE - - - - -

LJ14 Success 0% 0% 0% 0% 0%
Best 18.80 35.08 34.43 35.08 35.08

Mean±StE 24.15±0.315 37.70±0.167 36.91±0.139 39.74±0.242 38.61±0.225
Worst 29.80 40.01 39.68 42.30 41.34

Fevals±StE - - - - -

LJ15 Success 0% 0% 0% 0% 0%
Best 23.14 39.29 35.46 39.93 39.29

Mean±StE 28.32±0.322 42.06±0.192 40.95±0.182 43.89±0.238 42.81±0.249
Worst 32.09 45.44 43.04 46.77 45.94

Fevals±StE - - - - -

LJ16 Success 0% 0% 0% 0% 0%
Best 25.80 42.31 42.31 44.61 42.31

Mean±StE 32.45±0.353 47.23±0.211 45.63±0.139 48.24±0.216 47.80±0.255
Worst 37.62 49.59 47.09 50.78 50.45

Fevals±StE - - - - -

LJ17 Success 0% 0% 0% 0% 0%
Best 30.52 42.02 42.02 42.02 42.02

Mean±StE 37.13±0.408 51.11±0.307 49.48±0.234 52.31±0.295 51.47±0.349
Worst 42.20 53.63 51.91 55.70 55.70

Fevals±StE - - - - -

LJ18 Success 0% 0% 0% 0% 0%
Best 38.82 49.48 49.48 52.49 49.48

Mean±StE 43.23±0.261 56.23±0.257 54.48±0.180 57.55±0.240 57.08±0.302
Worst 47.29 59.26 56.73 59.79 60.25

Fevals±StE - - - - -

LJ19 Success 0% 0% 0% 0% 0%
Best 44.26 59.43 57.25 57.60 59.42

Mean±StE 49.28±0.336 62.78±0.192 60.63±0.166 62.96±0.231 62.87±0.226
Worst 53.42 65.54 62.72 65.59 65.87

Fevals±StE - - - - -

LJ20 Success 0% 0% 0% 0% 0%
Best 45.13 61.57 61.57 61.57 61.57

Mean±StE 53.59±0.409 67.34±0.216 64.81±0.168 67.70±0.243 67.51±0.270
Worst 58.92 69.60 66.52 70.66 70.70

Fevals±StE - - - - -

LJ26 Success 0% 0% 0% 0% 0%
Best 80.37 93.63 89.74 94.12 93.91

Mean±StE 84.92±0.285 97.12±0.228 94.33±0.234 96.87±0.199 97.18±0.217
Worst 88.98 100.6 97.17 99.73 100.2

Fevals±StE - - - - -

LJ38 Success 0% 0% 0% 0% 0%
Best 145.2 155.7 147.1 154.1 152.2

Mean±StE 150.3±0.265 161.4±0.324 156.7±0.379 159.9±0.315 160.1±0.420
Worst 153.8 164.7 163.0 163.9 164.5

Fevals±StE - - - - -

Table A.10: Results for multi-point adaptive DRS using rule 1a on Lennard-Jones problems 12–20, 26,
and 38
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f1 Success rate 100% 100% 100% 100%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Worst 0.0 0.0 0.0 0.0

FEvals±StE 76748±847 98769±872 74862±180 57177±182

f2 Success rate 0% 0% 0% 0%
Best 3.61E-5 2.19E-7 2.33 1.06E-6

Mean±StE 3.36E-3±1.21E-3 1.85E-5±1.01E-5 19.27±3.08 6.0E-4±2.14E-4
Worst 5.14E-2 5.1E-4 127.3 8.32E-3

FEvals±StE - - - -

f3 Success rate 0% 0% 0% 0%
Best 2.72E-5 2.8E-4 2.8E-2 1.15E-4

Mean±StE 8.48±1.18 6.29±1.54 13.99±1.80 15.14±3.37
Worst 33.1 69.7 70.43 79.55

FEvals±StE - - - -

Table A.11: Results for single-point adaptive DRS using rule 1b on unimodal problems

PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f4 Success rate 0% 0% 0% 0%
Best 829 2015 2369 3553

Mean±StE 1576±39 3274±50 2942±33 3553±1.17E-13
Worst 2013 3731 3435 3553

FEvals±StE - - - -

f5 Success rate 0% 0% 0% 0%
Best 2.98 0.995 0.995 36.81

Mean±StE 9.19±0.64 18.47±2.15 10.05±0.69 68.95±2.14
Worst 21.89 73.63 24.87 102.5

FEvals±StE - - - -

f6 Success rate 100% 32% 94% 0%
Best 0.0 0.0 0.0 0.931

Mean±StE 0.0±0.0 0.383±0.383 8.08E-16±4.61E-16 16.29±0.41
Worst 0.0 19.15 1.47E-14 18.50

FEvals±StE 226790±9485 270183±10178 215929±9757 -

f7 Success rate 94% 74% 98% 92%
Best 0.0 0.0 0.0 0.0

Mean±StE 4.44E-4±2.51E-4 2.27E-3±5.67E-4 1.48E-4±1.48E-4 9.36E-4±4.61E-4
Worst 7.4E-3 1.48E-2 7.4E-3 1.48E-2

FEvals±StE 70276±704 106736±2908 88251±1352 61719±383

f8 Success rate 96% 94% 94% 78%
Best 0.0 0.0 0.0 0.0

Mean±StE 4.15E-3±2.9E-3 6.22E-3±3.52E-3 6.22E-3±3.52E-3 4.77E-2±1.71E-2
Worst 0.104 0.104 0.104 0.518

FEvals±StE 95725±630 85459±2295 92602±730 62120±456

f9 Success rate 98% 100% 92% 86%
Best 0.0 0.0 0.0 0.0

Mean±StE 2.2E-4±2.2E-4 0.0±0.0 8.79E-4±4.26E-4 1.54E-3±5.45E-4
Worst 1.1E-2 0.0 1.1E-2 1.1E-2

FEvals±StE 91635±454 93815±1703 91166±358 63097±266

Table A.12: Results for single-point adaptive DRS using rule 1b on complex multimodal problems



170 Appendix A. Results tables

PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f10 Success rate 98% 100% 100% 100%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0163±0.0163 0.0±0.0 0.0±0.0 0.0±0.0
Worst 0.816 0.0 0.0 0.0

FEvals±StE 5622±122 7374±352 7481±228 4923±108

f11 Success rate 98% 84% 76% 78%
Best 0.0 0.0 0.0 0.0

Mean±StE 1.62±1.62 12.65±4.15 34.56±17.06 17.82±4.79
Worst 81.0 81.0 837.0 81.0

FEvals±StE 6198±134 4598±119 5772±221 7676±218

f12 Success rate 98% 86% 66% 98%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.149±0.149 0.537±0.235 2.39±0.48 0.149±0.149
Worst 7.47 7.47 7.47 7.47

FEvals±StE 16839±1415 13776±1053 10986±708 14290±694

f13 Success rate 98% 96% 66% 84%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.134±0.134 0.175±0.125 2.27±0.45 1.07±0.35
Worst 6.68 5.27 6.68 6.68

FEvals±StE 31861±2111 11516±291 12876±615 14933±536

f14 Success rate 100% 90% 76% 70%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.55±0.24 1.61±0.41 2.0±0.44
Worst 0.0 6.7 6.7 7.67

FEvals±StE 25119±1795 12108±453 14438±731 13516±543

Table A.13: Results for single-point adaptive DRS using rule 1b on simple multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP K PHI

LJ2 Success 100% 18% 4% 92%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 5.90E-11±2.76E-11 1.00E-11±2.70E-12 2.34E-15±1.34E-15
Worst 0.0 1.13E-09 1.22E-10 5.86E-14

Fevals±StE 7601±753 75613±23599 378874±106717 161194±18415

LJ3 Success 22% 2% 0% 80%
Best 0.0 0.0 4.02E-09 0.0

Mean±StE 3.20E-06±1.47E-06 1.37E-06±6.62E-07 3.53E-06±8.52E-07 8.20E-14±3.36E-14
Worst 7.25E-05 2.59E-05 3.20E-05 1.26E-12

Fevals±StE 417959±36851 139282±0 - 218902±21150

LJ4 Success 20% 48% 0% 92%
Best 0.0 0.0 4.39E-10 0.0

Mean±StE 2.70E-05±1.46E-05 1.01E-04±7.11E-05 2.11E-05±1.11E-05 3.61E-13±3.23E-13
Worst 7.17E-04 0.003 5.23E-04 1.62E-11

Fevals±StE 361428±27471 160318±16121 - 291474±19172

LJ5 Success 6% 84% 6% 100%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.001±3.88E-04 5.86E-06±3.66E-06 5.97E-04±2.43E-04 0.0±0.0
Worst 0.014 1.75E-04 0.012 0.0

Fevals±StE 522557±57857 86519±8671 427684±52735 213245±14554

LJ6 Success 0% 0% 0% 8%
Best 3.22E-04 0.005 0.007 0.0

Mean±StE 0.335±0.023 0.409±0.026 0.358±0.021 0.352±0.020
Worst 0.530 1.52 0.685 0.437

Fevals±StE - - - 323430±75045

LJ7 Success 0% 14% 0% 0%
Best 0.002 0.0 7.09E-04 5.29E-08

Mean±StE 0.779±0.091 0.829±0.078 0.886±0.085 0.506±0.059
Worst 2.99 3.03 2.37 1.09

Fevals±StE - 111735±29835 - -

LJ8 Success 0% 38% 0% 0%
Best 0.006 0.0 0.010 6.30E-06

Mean±StE 1.32±0.133 0.641±0.153 1.36±0.135 0.408±0.076
Worst 4.06 5.98 3.59 1.90

Fevals±StE - 150535±19444 - -

LJ9 Success 0% 22% 0% 0%
Best 1.15 0.0 0.420 7.93E-04

Mean±StE 3.89±0.203 1.74±0.259 3.47±0.212 1.19±0.082
Worst 7.92 6.74 6.56 2.27

Fevals±StE - 152720±26443 - -

LJ10 Success 0% 0% 0% 0%
Best 0.143 1.07E-07 2.22 0.003

Mean±StE 6.33±0.319 2.69±0.362 6.20±0.260 2.02±0.144
Worst 11.33 10.99 10.53 4.94

Fevals±StE - - - -

LJ11 Success 0% 0% 0% 0%
Best 5.32 0.851 5.12 0.863

Mean±StE 9.90±0.300 3.53±0.482 9.63±0.300 3.38±0.216
Worst 13.93 13.56 15.16 9.49

Fevals±StE - - - -

Table A.14: Results for single-point adaptive DRS using rule 1b on Lennard-Jones problems 2–11
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP K PHI

LJ12 Success 0% 0% 0% 0%
Best 10.78 4.38E-07 8.95 2.47

Mean±StE 14.80±0.282 6.34±0.699 15.03±0.300 5.63±0.244
Worst 19.36 18.17 19.43 9.52

Fevals±StE - - - -

LJ13 Success 0% 0% 0% 0%
Best 13.73 2.88 11.57 1.62

Mean±StE 20.55±0.366 10.35±0.849 20.44±0.431 8.94±0.329
Worst 24.28 25.61 25.53 14.05

Fevals±StE - - - -

LJ14 Success 0% 0% 0% 0%
Best 18.80 2.03 19.13 4.57

Mean±StE 24.15±0.315 11.81±1.09 24.38±0.334 9.46±0.362
Worst 29.80 28.82 29.44 16.32

Fevals±StE - - - -

LJ15 Success 0% 0% 0% 0%
Best 23.14 2.01 23.73 6.56

Mean±StE 28.32±0.322 15.43±1.33 28.17±0.308 11.55±0.380
Worst 32.09 36.83 32.59 17.55

Fevals±StE - - - -

LJ16 Success 0% 0% 0% 0%
Best 25.80 1.00 25.42 6.83

Mean±StE 32.45±0.353 18.54±1.49 32.45±0.334 12.89±0.407
Worst 37.62 41.19 36.73 20.79

Fevals±StE - - - -

LJ17 Success 0% 0% 0% 0%
Best 30.52 0.964 27.85 7.89

Mean±StE 37.13±0.408 20.54±1.83 37.32±0.430 15.99±0.514
Worst 42.20 43.52 43.14 25.33

Fevals±StE - - - -

LJ18 Success 0% 0% 0% 0%
Best 38.82 2.69 36.20 10.95

Mean±StE 43.23±0.261 22.84±2.11 42.36±0.372 18.48±0.560
Worst 47.29 50.63 46.76 27.51

Fevals±StE - - - -

LJ19 Success 0% 0% 0% 0%
Best 44.26 2.79 44.60 16.28

Mean±StE 49.28±0.336 28.13±2.07 49.34±0.318 24.39±0.564
Worst 53.42 52.31 54.33 34.76

Fevals±StE - - - -

LJ20 Success 0% 0% 0% 0%
Best 45.13 4.90 47.02 14.33

Mean±StE 53.59±0.409 31.86±2.29 53.17±0.308 26.57±0.712
Worst 58.92 55.68 57.96 34.56

Fevals±StE - - - -

LJ26 Success 0% 0% 0% 0%
Best 80.37 17.98 76.05 36.21

Mean±StE 84.92±0.285 64.52±2.85 85.53±0.351 49.95±0.821
Worst 88.98 92.60 90.94 62.33

Fevals±StE - - - -

LJ38 Success 0% 0% 0% 0%
Best 145.2 77.65 149.7 101.8

Mean±StE 150.3±0.265 134.6±3.00 153.3±0.279 115.7±0.944
Worst 153.8 156.6 158.0 129.6

Fevals±StE - - - -

Table A.15: Results for single-point adaptive DRS using rule 1b on Lennard-Jones problems 12–20, 26,
and 38
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f1 Success rate 100% 100% 100% 100% 100%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Worst 0.0 0.0 0.0 0.0 0.0

FEvals±StE 76748±847 48398±456 64405±1242 43309±365 46943±780

f2 Success rate 0% 0% 0% 0% 0%
Best 3.61E-5 2.65E-9 3.01E-7 1.47E-5 3.64E-8

Mean±StE 3.36E-3±1.21E-3 4.54E-6±1.97E-6 122.2±91.3 5.24E-2±2.77E-2 541.2±297.5
Worst 5.14E-2 9.33E-5 4172 1.35 11568

FEvals±StE - - - - -

f3 Success rate 0% 0% 0% 0% 0%
Best 2.72E-5 4.11E-3 8.47E-4 3.84E-4 9.02E-2

Mean±StE 8.48±1.18 5.28±0.81 25.17±4.29 11.67±2.72 31.39±5.46
Worst 33.1 18.25 94.51 78.2 136.4

FEvals±StE - - - - -

Table A.16: Results for multi-point adaptive DRS using rule 1b on unimodal problems

PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f4 Success rate 0% 0% 0% 0% 0%
Best 829 3079 3553 3435 3435

Mean±StE 1576±39 3370±23 3553±3.6E-12 3548±3 3554±4
Worst 2013 3731 3553 3553 3731

FEvals±StE - - - - -

f5 Success rate 0% 0% 0% 0% 0%
Best 2.98 32.83 18.9 19.9 40.79

Mean±StE 9.19±0.64 64.82±2.79 64.86±2.96 71.96±3.69 78.37±2.78
Worst 21.89 110.4 105.5 135.3 132.3

FEvals±StE - - - - -

f6 Success rate 100% 26% 0% 0% 0%
Best 0.0 0.0 5.37E-14 1.47E-14 1.57E-13

Mean±StE 0.0±0.0 0.42±0.40 3.18±0.96 14.72±0.79 11.69±1.25
Worst 0.0 19.75 19.4 18.36 19.59

FEvals±StE 226790±9485 174832±11884 - - -

f7 Success rate 94% 52% 48% 82% 46%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 4.4E-4±2.5E-4 8.1E-3±2.1E-3 9.97E-3±2.0E-3 7.9E-3±4.8E-3 1.0E-2±2.5E-3
Worst 7.4E-3 8.03E-2 7.54E-2 2.24E-1 7.79E-2

FEvals±StE 70276±704 49234±1616 72782±1967 46579±1200 51874±2014

f8 Success rate 96% 68% 92% 72% 56%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 4.2E-3±2.9E-3 7.5E-2±2.7E-2 8.3E-3±4.0E-3 1.3E-1±4.9E-2 2.1E-1±1.2E-1
Worst 0.104 1.25 0.104 1.98 5.64

FEvals±StE 95725±630 46873±1519 63386±1888 62750±4508 63022±2335

f9 Success rate 98% 84% 94% 72% 80%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 2.2E-4±2.2E-4 2.4E-3±1.0E-3 4.4E-4±3.1E-4 4.3E-2±3.3E-2 2.2E-3±6.3E-4
Worst 1.1E-2 4.39E-2 1.1E-2 1.60 1.1E-2

FEvals±StE 91635±454 48775±1581 67996±1607 52283±1661 55694±1456

Table A.17: Results for multi-point adaptive DRS using rule 1b on complex multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f10 Success rate 98% 100% 100% 100% 100%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 1.63E-2±1.63E-2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Worst 0.816 0.0 0.0 0.0 0.0

FEvals±StE 5622±122 9704±847 5695±241 4459±101 4725±140

f11 Success rate 98% 82% 82% 78% 66%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 1.62±1.62 14.48±4.42 14.58±4.45 32.94±17.05 27.54±5.48
Worst 81.0 81.0 81.0 837.0 81.0

FEvals±StE 6198±134 4541±198 7450±406 5877±139 5643±343

f12 Success rate 98% 88% 92% 86% 84%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.149±0.149 0.818±0.32 0.303±0.171 1.05±0.37 0.848±0.331
Worst 7.47 7.47 5.05 7.47 7.47

FEvals±StE 16839±1415 10505±381 14756±783 11378±449 10375±417

f13 Success rate 98% 86% 96% 72% 80%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.134±0.134 0.935±0.331 0.142±0.111 1.89±0.43 1.22±0.37
Worst 6.68 6.68 5.3 7.65 7.65

FEvals±StE 31861±2111 9137±365 14831±932 11714±339 11190±413

f14 Success rate 100% 92% 96% 72% 88%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.441±0.229 0.305±0.213 1.82±0.42 0.612±0.273
Worst 0.0 6.7 7.67 6.7 7.67

FEvals±StE 25119±1795 9315±314 12916±722 10816±345 11509±712

Table A.18: Results for multi-point adaptive DRS using rule 1b on simple multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP+K NP+PHI K+PHI NP+K+PHI

LJ2 Success 100% 8% 78% 90% 70%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 8.0E-11±2.1E-11 3.7E-13±2.9E-13 6.1E-15±4.2E-15 8.0E-14±3.3E-14
Worst 0.0 6.61E-10 1.45E-11 2.03E-13 1.06E-12

Fevals±StE 7601±753 162372±47817 85563±13205 167330±16501 143939±15044

LJ3 Success 22% 0% 92% 90% 86%
Best 0.0 1.02E-14 0.0 0.0 0.0

Mean±StE 3.2E-06±1.5E-06 1.0E-05±4.7E-06 2.7E-15±1.3E-15 9.0E-14±8.8E-14 9.9E-10±9.9E-10
Worst 7.25E-05 2.09E-04 4.13E-14 4.41E-12 4.95E-08

Fevals±StE 417959±36851 - 55502±8825 241670±23457 58081±8605

LJ4 Success 20% 28% 96% 90% 94%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 2.7E-05±1.5E-05 0.001±0.001 2.1E-12±2.0E-12 4.9E-15±2.7E-15 1.9E-09±1.9E-09
Worst 7.17E-04 0.060 1.00E-10 1.21E-13 9.71E-08

Fevals±StE 361428±27471 177189±24090 71232±8639 272866±18523 65143±8733

LJ5 Success 6% 74% 98% 100% 94%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.001±3.9E-04 0.005±0.005 0.002±0.002 0.0±0.0 6.1E-06±5.3E-06
Worst 0.014 0.225 0.081 0.0 2.64E-04

Fevals±StE 522557±57857 105536±10037 50576±7053 158424±9952 53420±8216

LJ6 Success 0% 2% 6% 4% 6%
Best 3.22E-04 0.0 0.0 0.0 0.0

Mean±StE 0.335±0.023 0.480±0.051 0.389±0.020 0.330±0.023 0.405±0.032
Worst 0.530 2.70 1.03 0.411 1.78

Fevals±StE - 30070±0 55801±17632 233656±78918 27374±4464

LJ7 Success 0% 24% 20% 8% 24%
Best 0.002 0.0 0.0 0.0 0.0

Mean±StE 0.779±0.091 0.595±0.062 0.771±0.057 0.294±0.056 0.770±0.084
Worst 2.99 1.44 1.52 0.973 3.39

Fevals±StE - 134595±28193 116504±27462 421957±56960 92825±28013

LJ8 Success 0% 34% 48% 4% 56%
Best 0.006 0.0 0.0 0.0 0.0

Mean±StE 1.32±0.133 0.757±0.186 0.535±0.157 0.250±0.060 0.365±0.080
Worst 4.06 5.59 7.30 1.70 2.36

Fevals±StE - 155767±19863 99680±13218 549749±5006 100390±11272

LJ9 Success 0% 10% 24% 0% 24%
Best 1.15 0.0 0.0 1.50E-06 0.0

Mean±StE 3.89±0.203 2.30±0.358 0.830±0.077 1.05±0.098 1.25±0.215
Worst 7.92 9.86 2.08 2.42 8.44

Fevals±StE - 221000±44862 103584±15486 - 72078±18688

LJ10 Success 0% 0% 0% 0% 0%
Best 0.143 1.07E-07 1.07E-07 2.63E-04 1.07E-07

Mean±StE 6.33±0.319 3.50±0.374 1.61±0.111 1.68±0.123 1.61±0.122
Worst 11.33 12.81 3.18 3.68 5.69

Fevals±StE - - - - -

LJ11 Success 0% 4% 14% 0% 4%
Best 5.32 0.0 0.0 0.573 0.0

Mean±StE 9.90±0.300 4.55±0.542 2.37±0.369 3.13±0.234 2.31±0.237
Worst 13.93 14.21 12.68 7.70 9.08

Fevals±StE - 201151±85547 168507±46917 - 147480±32335

Table A.19: Results for multi-point adaptive DRS using rule 1b on Lennard-Jones problems 2–11
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP+K NP+PHI K+PHI NP+K+PHI

LJ12 Success 0% 0% 0% 0% 0%
Best 10.78 1.62 1.66 1.73 1.62

Mean±StE 14.80±0.282 7.88±0.745 4.28±0.446 5.09±0.235 4.17±0.449
Worst 19.36 19.98 13.17 9.96 17.79

Fevals±StE - - - - -

LJ13 Success 0% 0% 2% 0% 0%
Best 13.73 2.88 0.0 4.52 2.88

Mean±StE 20.55±0.366 11.39±0.924 6.10±0.436 8.11±0.240 5.81±0.349
Worst 24.28 27.84 19.15 11.28 15.11

Fevals±StE - - 244245±0 - -

LJ14 Success 0% 0% 0% 0% 0%
Best 18.80 2.79 2.17E-07 3.29 2.17E-07

Mean±StE 24.15±0.315 15.31±1.00 5.78±0.696 9.18±0.408 7.04±0.646
Worst 29.80 28.55 20.94 16.56 21.93

Fevals±StE - - - - -

LJ15 Success 0% 0% 0% 0% 0%
Best 23.14 1.90 1.90 5.14 0.935

Mean±StE 28.32±0.322 17.80±1.48 7.13±0.695 11.67±0.458 5.56±0.491
Worst 32.09 36.15 24.60 20.23 18.75

Fevals±StE - - - - -

LJ16 Success 0% 0% 0% 0% 0%
Best 25.80 1.91 5.38E-04 5.56 2.20E-07

Mean±StE 32.45±0.353 24.36±1.58 6.94±0.769 13.21±0.536 7.98±0.971
Worst 37.62 42.37 19.33 23.38 26.55

Fevals±StE - - - - -

LJ17 Success 0% 0% 0% 0% 0%
Best 30.52 3.01 0.870 6.52 0.870

Mean±StE 37.13±0.408 23.18±1.70 8.68±1.04 14.99±0.490 7.74±0.755
Worst 42.20 44.18 29.86 21.86 23.23

Fevals±StE - - - - -

LJ18 Success 0% 0% 0% 0% 2%
Best 38.82 4.20 0.246 9.27 0.0

Mean±StE 43.23±0.261 28.89±1.78 10.16±1.04 17.97±0.553 10.92±1.29
Worst 47.29 48.96 29.05 27.92 33.29

Fevals±StE - - - - 289177±0

LJ19 Success 0% 0% 0% 0% 0%
Best 44.26 3.51 2.36 11.04 3.30

Mean±StE 49.28±0.336 41.60±1.81 11.55±1.05 24.27±0.742 13.99±1.20
Worst 53.42 58.29 32.18 35.14 35.36

Fevals±StE - - - - -

LJ20 Success 0% 0% 0% 0% 0%
Best 45.13 7.09 2.35 16.30 2.42

Mean±StE 53.59±0.409 44.17±1.80 13.18±1.24 25.84±0.808 13.99±1.43
Worst 58.92 60.05 37.65 42.51 40.61

Fevals±StE - - - - -

LJ26 Success 0% 0% 0% 0% 0%
Best 80.37 29.79 3.02 37.82 6.10

Mean±StE 84.92±0.285 78.53±1.73 25.90±2.03 51.03±0.799 25.55±2.00
Worst 88.98 91.81 67.43 63.05 61.74

Fevals±StE - - - - -

LJ38 Success 0% 0% 0% 0% 0%
Best 145.2 61.81 16.32 91.89 35.71

Mean±StE 150.3±0.265 143.7±2.91 66.54±4.11 115.9±1.08 72.36±3.57
Worst 153.8 159.3 127.0 131.6 131.3

Fevals±StE - - - - -

Table A.20: Results for multi-point adaptive DRS using rule 1b on Lennard-Jones problems 12–20, 26,
and 38
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f1 Success rate 100% 0% 0% 100%
Best 0.0 7.55E-4 15430 0.0

Mean±StE 0.0±0.0 1.39E-2±1.95E-3 30431±885 0.0±0.0
Worst 0.0 6.86E-2 47033 0.0

FEvals±StE 76748±847 - - 58776±235

f2 Success rate 0% 0% 0% 0%
Best 3.61E-5 155.2 1.06E-3 3.26E-5

Mean±StE 3.36E-3±1.21E-3 13551±1447 1.71E-1±4.3E-2 6.69E-4±1.06E-4
Worst 5.14E-2 26596 1.89 3.24E-3

FEvals±StE - - - -

f3 Success rate 0% 0% 0% 0%
Best 2.72E-5 72.6 1.6E-2 4.48E-4

Mean±StE 8.48±1.18 68756±21455 21.1±3.26 13.2±3.12
Worst 33.1 709646 79.1 80.0

FEvals±StE - - - -

Table A.21: Results for single-point adaptive DRS using rule 2 on unimodal problems

PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f4 Success rate 0% 0% 0% 0%
Best 829 3524 1658 2013

Mean±StE 1576±39 5491±72 2081±37 3217±58
Worst 2013 6290 2611 3553

FEvals±StE - - - -

f5 Success rate 0% 0% 0% 0%
Best 2.98 56.8 1.99 9.95

Mean±StE 9.19±0.64 182.2±7.76 9.09±0.57 41.4±2.74
Worst 21.89 233 20.89 92.5

FEvals±StE - - - -

f6 Success rate 100% 0% 100% 16%
Best 0.0 0.99 0.0 0.0

Mean±StE 0.0±0.0 12.18±0.82 0.0±0.0 1.57±0.58
Worst 0.0 18.09 0.0 14.92

FEvals±StE 226790±9485 - 149384±1066 249562±15697

f7 Success rate 94% 0% 94% 90%
Best 0.0 0.42 0.0 0.0

Mean±StE 4.44E-4±2.51E-4 1.37±0.11 4.44E-4±2.51E-4 7.89E-4±3.41E-4
Worst 7.4E-3 3.68 7.4E-3 9.86E-3

FEvals±StE 70276±704 - 61856±891 62852±446

f8 Success rate 96% 0% 100% 82%
Best 0.0 1.51E-2 0.0 0.0

Mean±StE 4.15E-3±2.9E-3 7.4E5±1.3E5 0.0±0.0 5.6E-2±2.04E-2
Worst 0.104 4.76E6 0.0 0.62

FEvals±StE 95725±630 - 105991±969 63904±536

f9 Success rate 98% 0% 100% 80%
Best 0.0 1.13 0.0 0.0

Mean±StE 2.2E-4±2.2E-4 3.36E6±6.2E5 0.0±0.0 2.66E-2±2.46E-2
Worst 0.011 2.35E7 0.0 1.23

FEvals±StE 91635±454 - 103086±675 64358±288

Table A.22: Results for single-point adaptive DRS using rule 2 on complex multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f10 Success rate 98% 98% 40% 92%
Best 0.0 0.0 0.0 0.0

Mean±StE 1.63E-2±1.63E-2 1.63E-2±1.63E-2 2.35±0.8 6.53E-2±3.16E-2
Worst 0.816 0.816 30.56 0.816

FEvals±StE 5622±122 14990±1016 5346±226 6398±338

f11 Success rate 98% 96% 100% 90%
Best 0.0 0.0 0.0

Mean±StE 1.62±1.62 6.9E-15±6.6E-15 0.0±0.0 8.1±3.47
Worst 81.0 3.3E-13 0.0 81.0

FEvals±StE 6198±134 17884±4209 6314±222 5919±135

f12 Success rate 98% 6% 68% 88%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.149±0.149 0.515±0.247 2.39±0.498 0.751±0.297
Worst 7.47 7.47 7.52 7.47

FEvals±StE 16839±1415 251606±27340 15485±1506 13439±533

f13 Success rate 98% 0% 94% 90%
Best 0.0 4.4E-10 0.0 0.0

Mean±StE 0.134±0.134 2.7E-7±8.88E-8 0.401±0.227 0.64±0.275
Worst 6.68 3.67E-6 6.68 6.68

FEvals±StE 31861±2111 - 45727±9013 15379±463

f14 Success rate 100% 0% 98% 78%
Best 0.0 2.8E-10 0.0 0.0

Mean±StE 0.0±0.0 4.55E-7±2.18E-7 0.133±0.133 1.47±0.396
Worst 0.0 1.02E-5 6.67 7.67

FEvals±StE 25119±1795 - 35566±3691 14470±421

Table A.23: Results for single-point adaptive DRS using rule 2 on simple multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP K PHI

LJ2 Success 100% 0% 4% 38%
Best 0.0 1.47E-14 0.0 0.0

Mean±StE 0.0±0.0 1.65E-10±4.16E-11 1.41E-10±5.18E-11 1.43E-11±1.08E-11
Worst 0.0 1.45E-09 2.31E-09 5.23E-10

Fevals±StE 7601±753 - 364636±179536 265298±35500

LJ3 Success 22% 0% 0% 38%
Best 0.0 4.34E-05 5.47E-06 0.0

Mean±StE 3.20E-06±1.47E-06 0.003±3.33E-04 4.74E-04±8.52E-05 3.05E-07±2.10E-07
Worst 7.25E-05 0.010 0.003 9.28E-06

Fevals±StE 417959±36851 - - 269175±28221

LJ4 Success 20% 0% 0% 50%
Best 0.0 0.016 2.84E-05 0.0

Mean±StE 2.70E-05±1.46E-05 0.572±0.035 0.010±0.003 4.04E-08±4.04E-08
Worst 7.17E-04 1.15 0.101 2.02E-06

Fevals±StE 361428±27471 - - 376894±26791

LJ5 Success 6% 0% 0% 94%
Best 0.0 1.19 6.56E-04 0.0

Mean±StE 0.001±3.88E-04 2.39±0.058 0.205±0.031 4.23E-06±2.94E-06
Worst 0.014 3.02 0.923 1.11E-04

Fevals±StE 522557±57857 - - 229575±16543

LJ6 Success 0% 0% 0% 10%
Best 3.22E-04 3.83 0.293 0.0

Mean±StE 0.335±0.023 5.08±0.067 1.53±0.103 0.291±0.026
Worst 0.530 5.71 3.20 0.415

Fevals±StE - - - 321144±56840

LJ7 Success 0% 0% 0% 4%
Best 0.002 6.50 0.732 0.0

Mean±StE 0.779±0.091 8.23±0.082 3.65±0.195 0.390±0.062
Worst 2.99 9.12 6.62 1.08

Fevals±StE - - - 483838±55369

LJ8 Success 0% 0% 0% 0%
Best 0.006 7.42 3.81 2.83E-05

Mean±StE 1.32±0.133 10.65±0.113 6.58±0.151 0.398±0.074
Worst 4.06 11.82 9.11 2.30

Fevals±StE - - - -

LJ9 Success 0% 0% 0% 0%
Best 1.15 10.83 6.69 9.63E-07

Mean±StE 3.89±0.203 14.37±0.137 9.94±0.196 1.35±0.226
Worst 7.92 15.18 13.24 8.25

Fevals±StE - - - -

LJ10 Success 0% 0% 0% 0%
Best 0.143 15.74 11.12 0.007

Mean±StE 6.33±0.319 18.31±0.097 14.05±0.184 2.74±0.287
Worst 11.33 19.51 16.63 11.09

Fevals±StE - - - -

LJ11 Success 0% 0% 0% 0%
Best 5.32 15.91 14.98 0.708

Mean±StE 9.90±0.300 21.40±0.166 18.31±0.177 3.66±0.269
Worst 13.93 22.95 20.76 10.96

Fevals±StE - - - -

Table A.24: Results for single-point adaptive DRS using rule 2 on Lennard-Jones problems 2–11
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP K PHI

LJ12 Success 0% 0% 0% 0%
Best 10.78 20.48 18.88 2.02

Mean±StE 14.80±0.282 25.50±0.187 23.16±0.216 7.08±0.606
Worst 19.36 27.32 26.91 19.56

Fevals±StE - - - -

LJ13 Success 0% 0% 0% 0%
Best 13.73 25.13 26.47 5.08

Mean±StE 20.55±0.366 30.60±0.249 29.67±0.186 10.32±0.642
Worst 24.28 33.11 33.24 25.41

Fevals±StE - - - -

LJ14 Success 0% 0% 0% 0%
Best 18.80 28.89 30.33 4.69

Mean±StE 24.15±0.315 33.44±0.215 32.77±0.178 12.06±0.860
Worst 29.80 35.84 35.39 30.01

Fevals±StE - - - -

LJ15 Success 0% 0% 0% 0%
Best 23.14 33.24 34.23 4.86

Mean±StE 28.32±0.322 37.06±0.192 37.67±0.176 15.57±1.14
Worst 32.09 39.38 41.01 33.63

Fevals±StE - - - -

LJ16 Success 0% 0% 0% 0%
Best 25.80 35.56 38.66 6.67

Mean±StE 32.45±0.353 40.75±0.222 42.04±0.183 17.36±1.08
Worst 37.62 43.25 44.74 39.76

Fevals±StE - - - -

LJ17 Success 0% 0% 0% 0%
Best 30.52 40.90 42.02 6.67

Mean±StE 37.13±0.408 44.90±0.199 46.24±0.215 19.87±1.03
Worst 42.20 47.84 49.45 41.05

Fevals±StE - - - -

LJ18 Success 0% 0% 0% 0%
Best 38.82 46.13 47.95 11.16

Mean±StE 43.23±0.261 49.75±0.219 51.07±0.195 26.13±1.47
Worst 47.29 53.62 53.68 47.41

Fevals±StE - - - -

LJ19 Success 0% 0% 0% 0%
Best 44.26 48.58 53.66 18.45

Mean±StE 49.28±0.336 55.94±0.292 57.54±0.208 31.41±1.44
Worst 53.42 60.54 59.61 55.83

Fevals±StE - - - -

LJ20 Success 0% 0% 0% 0%
Best 45.13 54.18 57.10 14.93

Mean±StE 53.59±0.409 59.97±0.369 61.97±0.213 34.21±1.55
Worst 58.92 65.05 64.48 58.43

Fevals±StE - - - -

LJ26 Success 0% 0% 0% 0%
Best 80.37 89.15 89.55 47.25

Mean±StE 84.92±0.285 92.16±0.198 92.72±0.193 64.67±1.81
Worst 88.98 94.37 95.82 90.69

Fevals±StE - - - -

LJ38 Success 0% 0% 0% 0%
Best 145.2 146.9 154.3 119.3

Mean±StE 150.3±0.265 153.9±0.326 158.8±0.339 137.0±1.78
Worst 153.8 157.4 165.0 156.1

Fevals±StE - - - -

Table A.25: Results for single-point adaptive DRS using rule 2 on Lennard-Jones problems 12–20, 26,
and 38
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f1 Success rate 100% 0% 0% 100% 96%
Best 0.0 3.62E-13 1.83E-9 0.0 0.0

Mean±StE 0.0±0.0 2.4E-12±2.5E-13 7.7E-7±6.9E-7 0.0±0.0 9.9E-15±9.4E-15
Worst 0.0 8.94E-12 3.46E-5 0.0 4.7E-13

FEvals±StE 76748±847 - - 46435±420 174703±15602

f2 Success rate 0% 0% 0% 0% 0%
Best 3.61E-5 1.02E-2 1.18E-1 6.22E-6 1.16E-6

Mean±StE 3.4E-3±1.2E-3 7.1E-2±7.1E-3 5.9E-1±3.5E-2 5.2E-2±3.0E-2 2.7E-3±2.0E-3
Worst 5.14E-2 2.3E-1 1.27 1.47 9.5E-2

FEvals±StE - - - - -

f3 Success rate 0% 0% 0% 0% 0%
Best 2.72E-5 9.35E-3 9.36E-2 1.16E-4 6.36E-3

Mean±StE 8.48±1.18 9.47±1.66 13.78±2.81 8.76±2.11 11.35±1.57
Worst 33.1 77.04 73.25 74.74 66.58

FEvals±StE - - - - -

Table A.26: Results for multi-point adaptive DRS using rule 2 on unimodal problems

PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f4 Success rate 0% 0% 0% 0% 0%
Best 829 3322 2865 2250 2606

Mean±StE 1576±39 4585±129 3298±28 3238±45 3345±27
Worst 2013 5967 3553 3553 3553

FEvals±StE - - - - -

f5 Success rate 0% 0% 0% 0% 0%
Best 2.98 1.001 4.78E-6 8.95 6.04E-14

Mean±StE 9.19±0.64 7.18±0.705 6.27±0.799 48.77±3.84 20.68±2.42
Worst 21.89 24.88 22.88 139.29 73.63

FEvals±StE - - - - -

f6 Success rate 100% 0% 0% 58% 0%
Best 0.0 4.59E-3 8.37E-5 0.0 4.68E-9

Mean±StE 0.0±0.0 7.8E-3±2.6E-4 1.4E-4±5.2E-6 8.2E-1±2.8E-1 1.3E-6±8.0E-7
Worst 0.0 1.24E-2 2.54E-4 10.91 3.39E-5

FEvals±StE 226790±9485 - - 151427±13226 -

f7 Success rate 94% 0% 0% 66% 20%
Best 0.0 2.05E-6 2.38E-7 0.0 0.0

Mean±StE 4.4E-4±2.5E-4 2.2E-3±6.2E-4 4.0E-4±2.2E-4 4.0E-3±9.5E-4 3.6E-3±1.1E-3
Worst 7.4E-3 1.73E-2 7.4E-3 2.7E-2 3.2E-2

FEvals±StE 70276±704 - - 48151±523 317417±18013

f8 Success rate 96% 0% 0% 68% 98%
Best 0.0 6.52E-7 1.62E-10 0.0 0.0

Mean±StE 4.2E-3±2.9E-3 3.4E-6±2.9E-7 8.9E-10±8.3E-11 1.1E-1±3.6E-2 5.1E-14±5.1E-14
Worst 0.104 1.06E-5 3.19E-9 1.36 2.5E-12

FEvals±StE 95725±630 - - 55908±903 129594±13401

f9 Success rate 98% 0% 0% 74% 94%
Best 0.0 1.65E-5 1.31E-9 0.0 0.0

Mean±StE 2.2E-4±2.2E-4 5.7E-5±4.0E-6 9.3E-5±7.7E-5 9.2E-2±5.0E-2 1.0E-10±9.5E-11
Worst 1.1E-2 1.24E-4 3.73E-3 1.60 4.71E-9

FEvals±StE 91635±454 - - 55753±844 184279±12718

Table A.27: Results for multi-point adaptive DRS using rule 2 on complex multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f10 Success rate 98% 92% 100% 82% 100%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 1.63E-2±1.63E-2 6.53E-2±3.16E-2 0.0±0.0 1.47E-1±4.48E-2 0.0±0.0
Worst 0.816 0.816 0.0 0.816 0.0

FEvals±StE 5622±122 10101±811 14317±5608 6802±307 21097±4609

f11 Success rate 98% 100% 100% 92% 100%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 1.62±1.62 0.0±0.0 0.0±0.0 4.86±2.75 0.0±0.0
Worst 81.0 0.0 0.0 81.0 0.0

FEvals±StE 6198±134 8051±354 6200±258 5211±130 14424±7875

f12 Success rate 98% 68% 96% 72% 76%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.149±0.149 1.38±0.38 0.299±0.209 1.996±0.462 1.59±0.412
Worst 7.47 7.47 7.47 7.52 7.47

FEvals±StE 16839±1415 24365±1889 17657±1413 10341±487 22225±7581

f13 Success rate 98% 18% 100% 84% 98%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.134±0.134 0.128±0.128 0.0±0.0 1.01±0.33 0.134±0.134
Worst 6.68 6.40 0.0 6.68 6.74

FEvals±StE 31861±2111 120340±17304 16543±914 10755±451 15454±823

f14 Success rate 100% 14% 100% 92% 100%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 9.38E-12±1.97E-12 0.0±0.0 5.36E-1±2.6E-1 0.0±0.0
Worst 0.0 7.77E-11 0.0 6.70 0.0

FEvals±StE 25119±1795 109764±12486 16902±944 12602±676 14762±996

Table A.28: Results for multi-point adaptive DRS using rule 2 on simple multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP+K NP+PHI K+PHI NP+K+PHI

LJ2 Success 100% 2% 96% 20% 100%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 1.1E-10±2.5E-11 1.5E-14±1.5E-14 1.5E-12±6.0E-13 0.0±0.0
Worst 0.0 9.08E-10 7.27E-13 2.06E-11 0.0

Fevals±StE 7601±753 282074±0 191298±16706 292648±57023 8807±932

LJ3 Success 22% 0% 0% 2% 98%
Best 0.0 1.02E-09 2.93E-14 0.0 0.0

Mean±StE 3.2E-06±1.5E-06 2.6E-06±8.1E-07 4.5E-11±1.5E-11 2.0E-08±1.8E-08 1.4E-07±1.4E-07
Worst 7.25E-05 3.74E-05 7.14E-10 9.02E-07 6.98E-06

Fevals±StE 417959±36851 - - 235624±0 64379±11222

LJ4 Success 20% 0% 0% 30% 98%
Best 0.0 1.05E-07 5.10E-11 0.0 0.0

Mean±StE 2.7E-05±1.5E-05 8.2E-06±2.1E-06 1.1E-09±2.5E-10 8.0E-10±6.5E-10 5.9E-06±5.9E-06
Worst 7.17E-04 9.78E-05 1.09E-08 3.25E-08 2.97E-04

Fevals±StE 361428±27471 - - 401547±30970 86547±12957

LJ5 Success 6% 2% 98% 94% 96%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.001±3.9E-04 2.4E-05±3.7E-06 0.003±0.003 4.4E-08±2.6E-08 0.015±0.013
Worst 0.014 1.31E-04 0.171 9.68E-07 0.632

Fevals±StE 522557±57857 95067±0 95101±12227 272572±16629 83811±15056

LJ6 Success 0% 0% 6% 6% 10%
Best 3.22E-04 3.95E-05 0.0 0.0 0.0

Mean±StE 0.335±0.023 0.817±0.169 0.411±0.031 0.326±0.023 0.406±0.034
Worst 0.530 4.81 1.78 0.410 1.61

Fevals±StE - - 99821±26007 452427±37538 69145±11436

LJ7 Success 0% 0% 26% 0% 42%
Best 0.002 2.23E-05 0.0 1.03E-07 0.0

Mean±StE 0.779±0.091 3.22±0.231 0.688±0.074 0.254±0.054 0.525±0.067
Worst 2.99 5.80 2.79 0.973 1.52

Fevals±StE - - 165260±19538 - 115489±27942

LJ8 Success 0% 0% 42% 0% 50%
Best 0.006 0.005 0.0 5.38E-07 0.0

Mean±StE 1.32±0.133 6.13±0.337 0.478±0.158 0.167±0.047 0.456±0.128
Worst 4.06 10.13 7.57 1.72 5.87

Fevals±StE - - 214654±24648 - 107249±10164

LJ9 Success 0% 0% 22% 0% 12%
Best 1.15 4.62 0.0 1.95E-04 0.0

Mean±StE 3.89±0.203 10.10±0.351 1.03±0.131 1.17±0.096 1.04±0.075
Worst 7.92 14.94 5.66 2.75 2.03

Fevals±StE - - 159382±19727 - 166648±79646

LJ10 Success 0% 0% 0% 0% 0%
Best 0.143 11.43 1.36E-07 0.030 1.07E-07

Mean±StE 6.33±0.319 15.56±0.248 1.46±0.142 1.80±0.134 1.93±0.425
Worst 11.33 18.72 6.34 4.24 14.98

Fevals±StE - - - - -

LJ11 Success 0% 0% 2% 0% 6%
Best 5.32 13.34 0.0 1.18 0.0

Mean±StE 9.90±0.300 19.68±0.296 2.25±0.275 3.31±0.191 2.32±0.340
Worst 13.93 22.59 11.27 6.25 15.83

Fevals±StE - - 510731±0 - 299412±43412

Table A.29: Results for multi-point adaptive DRS using rule 2 on Lennard-Jones problems 2–11
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP+K NP+PHI K+PHI NP+K+PHI

LJ12 Success 0% 0% 0% 0% 0%
Best 10.78 17.79 1.66 1.06 4.38E-07

Mean±StE 14.80±0.282 24.28±0.295 3.85±0.392 5.69±0.290 3.74±0.642
Worst 19.36 27.56 13.30 11.46 26.00

Fevals±StE - - - - -

LJ13 Success 0% 0% 2% 0% 4%
Best 13.73 26.12 0.0 4.73 0.0

Mean±StE 20.55±0.366 30.76±0.231 5.94±0.488 10.38±0.392 6.03±0.603
Worst 24.28 32.93 23.43 17.59 27.34

Fevals±StE - - 481136±0 - 326334±62880

LJ14 Success 0% 0% 0% 0% 0%
Best 18.80 30.17 8.44E-07 4.37 2.17E-07

Mean±StE 24.15±0.315 33.61±0.208 4.85±0.417 11.61±0.376 6.60±0.610
Worst 29.80 36.34 14.92 15.74 28.14

Fevals±StE - - - - -

LJ15 Success 0% 0% 0% 0% 2%
Best 23.14 33.91 1.14E-06 6.56 0.0

Mean±StE 28.32±0.322 37.94±0.213 4.99±0.405 14.51±0.481 6.10±0.491
Worst 32.09 40.50 13.07 21.96 17.10

Fevals±StE - - - - 179019±0

LJ16 Success 0% 0% 0% 0% 0%
Best 25.80 35.56 2.12 9.90 1.70E-06

Mean±StE 32.45±0.353 41.48±0.276 7.59±0.721 17.83±0.542 7.41±0.542
Worst 37.62 44.60 19.42 25.70 20.56

Fevals±StE - - - - -

LJ17 Success 0% 0% 0% 0% 0%
Best 30.52 41.93 0.245 14.79 0.011

Mean±StE 37.13±0.408 45.80±0.229 6.89±0.668 22.70±0.612 8.12±0.972
Worst 42.20 48.61 23.29 33.19 43.25

Fevals±StE - - - - -

LJ18 Success 0% 0% 0% 0% 0%
Best 38.82 46.25 1.57 15.11 0.246

Mean±StE 43.23±0.261 50.33±0.237 9.75±1.11 26.72±0.728 12.96±1.36
Worst 47.29 53.62 50.17 34.57 50.58

Fevals±StE - - - - -

LJ19 Success 0% 0% 0% 0% 0%
Best 44.26 48.58 2.36 23.12 3.55

Mean±StE 49.28±0.336 57.02±0.339 12.21±1.45 33.84±0.690 14.08±0.941
Worst 53.42 61.18 52.71 44.31 31.78

Fevals±StE - - - - -

LJ20 Success 0% 0% 0% 0% 0%
Best 45.13 54.18 2.82 25.96 3.23

Mean±StE 53.59±0.409 61.07±0.393 10.04±0.600 37.71±0.638 16.78±1.32
Worst 58.92 67.73 19.57 47.22 61.49

Fevals±StE - - - - -

LJ26 Success 0% 0% 0% 0% 0%
Best 80.37 90.53 4.12 58.49 13.04

Mean±StE 84.92±0.285 94.93±0.256 17.90±1.38 71.62±0.699 31.63±1.89
Worst 88.98 97.77 39.41 82.80 91.88

Fevals±StE - - - - -

LJ38 Success 0% 0% 0% 0% 0%
Best 145.2 153.4 13.89 132.0 39.10

Mean±StE 150.3±0.265 158.9±0.371 53.63±3.48 140.5±0.531 75.30±2.76
Worst 153.8 163.0 112.7 148.7 152.9

Fevals±StE - - - - -

Table A.30: Results for multi-point adaptive DRS using rule 2 on Lennard-Jones problems 12–20, 26,
and 38
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f1 Success rate 100% 100% 0% 100%
Best 0.0 0.0 8197 0.0

Mean±StE 0.0±0.0 0.0±0.0 18182±705 0.0±0.0
Worst 0.0 0.0 35919 0.0

FEvals±StE 76748±847 146136±15472 - 57332±174

f2 Success rate 0% 0% 0% 0%
Best 3.61E-5 3.08E-6 9.72E-2 6.05E-5

Mean±StE 3.36E-3±1.21E-3 7.81±2.16 29.97±10.8 3.65E-3±1.4E-3
Worst 5.14E-2 577.6 440.3 6.57E-2

FEvals±StE - - - -

f3 Success rate 0% 0% 0% 0%
Best 2.72E-5 2.85E-6 1.71E-4 1.84E-3

Mean±StE 8.48±1.18 9.32±2.48 24.7±4.63 8.1±2.05
Worst 33.1 79.3 127.2 74.3

FEvals±StE - -

Table A.31: Results for single-point adaptive DRS using rule 3 on unimodal problems

PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f4 Success rate 0% 0% 0% 0%
Best 829 473 1658 1066

Mean±StE 1576±39 2085±115 2436±67 2347±92
Worst 2013 3316 3834 3553

FEvals±StE - - - -

f5 Success rate 0% 6% 0% 0%
Best 2.98 0.0 3.98 1.99

Mean±StE 9.19±0.64 10.97±1.42 15.86±1.72 30.53±2.96
Worst 21.89 41.79 80.45 76.61

FEvals±StE - 437421±15196 - -

f6 Success rate 100% 70% 100% 18%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 1.02E-11±1.02E-11 0.0±0.0 1.86E-2±1.86E-2
Worst 0.0 5.09E-10 0.0 0.931

FEvals±StE 226790±9485 285195±12686 149647±2268 314949±20182

f7 Success rate 94% 80% 90% 86%
Best 0.0 0.0 0.0 0.0

Mean±StE 4.44E-4±2.51E-4 1.33E-3±4.06E-4 7.89E-4±3.41E-4 1.43E-3±5.76E-4
Worst 7.4E-3 7.4E-3 9.86E-3 2.24E-2

FEvals±StE 70276±704 142750±14177 58751±413 62029±470

f8 Success rate 96% 100% 100% 86%
Best 0.0 0.0 0.0 0.0

Mean±StE 4.15E-3±2.9E-3 0.0±0.0 0.0±0.0 3.11E-2±1.73E-2
Worst 0.104 0.0 0.0 0.83

FEvals±StE 95725±630 170665±18994 104691±1192 63043±627

f9 Success rate 98% 100% 96% 80%
Best 0.0 0.0 0.0 0.0

Mean±StE 2.2E-4±2.2E-4 0.0±0.0 4.39E-4±3.08E-4 2.2E-3±6.28E-4
Worst 0.011 0.0 0.011 0.011

FEvals±StE 91635±454 178617±18196 108072±1066 63832±371

Table A.32: Results for single-point adaptive DRS using rule 3 on complex multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP K φ

f10 Success rate 98% 100% 64% 92%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0163±0.0163 0.0±0.0 0.294±0.056 0.0653±0.0316
Worst 0.816 0.0 0.816 0.816

FEvals±StE 5622±122 9235±335 10099±1173 6049±161

f11 Success rate 98% 92% 100% 100%
Best 0.0 0.0 0.0 0.0

Mean±StE 1.62±1.62 6.48±3.14 0.0±0.0 0.0±0.0
Worst 81.0 81.0 0.0 0.0

FEvals±StE 6198±134 8308±470 6478±234 5997±168

f12 Success rate 98% 100% 78% 82%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.149±0.149 0.0±0.0 1.55±0.42 1.3±0.398
Worst 7.47 0.0 7.47 7.47

FEvals±StE 16839±1415 31124±4195 18593±1563 14159±816

f13 Success rate 98% 94% 94% 90%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.134±0.134 0.345±0.196 0.401±0.227 0.668±0.286
Worst 6.68 6.68 6.68 6.68

FEvals±StE 31861±2111 23605±1765 50225±11207 14609±565

f14 Success rate 100% 98% 98% 82%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.134±0.134 0.134±0.134 1.15±0.353
Worst 0.0 6.7 6.7 6.7

FEvals±StE 25119±1795 26557±3766 39623±7323 16131±626

Table A.33: Results for single-point adaptive DRS using rule 3 on simple multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP K PHI

LJ2 Success 100% 18% 2% 26%
Best 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 5.02E-12±1.64E-12 1.44E-10±3.31E-11 5.61E-12±2.34E-12
Worst 0.0 5.92E-11 1.35E-09 8.29E-11

Fevals±StE 7601±753 275870±55688 229440±0 227716±45308

LJ3 Success 22% 2% 0% 10%
Best 0.0 0.0 1.21E-06 0.0

Mean±StE 3.20E-06±1.47E-06 1.24E-07±6.03E-08 8.43E-04±1.87E-04 1.04E-05±6.01E-06
Worst 7.25E-05 2.68E-06 0.007 2.96E-04

Fevals±StE 417959±36851 136418±0 - 396184±40379

LJ4 Success 20% 2% 0% 22%
Best 0.0 0.0 8.44E-06 0.0

Mean±StE 2.70E-05±1.46E-05 2.61E-06±2.32E-06 0.023±0.007 7.69E-05±6.86E-05
Worst 7.17E-04 1.16E-04 0.298 0.003

Fevals±StE 361428±27471 453873±0 - 409173±27727

LJ5 Success 6% 74% 0% 72%
Best 0.0 0.0 3.12E-06 0.0

Mean±StE 0.001±3.88E-04 4.42E-05±3.12E-05 0.447±0.086 2.62E-04±1.59E-04
Worst 0.014 0.001 2.59 0.007

Fevals±StE 522557±57857 320535±21760 - 279537±22177

LJ6 Success 0% 4% 0% 2%
Best 3.22E-04 0.0 0.140 0.0

Mean±StE 0.335±0.023 0.278±0.026 1.77±0.137 0.365±0.024
Worst 0.530 0.545 4.20 0.922

Fevals±StE - 409420±84214 - 257878±0

LJ7 Success 0% 0% 0% 2%
Best 0.002 1.41E-06 1.20 0.0

Mean±StE 0.779±0.091 0.492±0.066 3.95±0.184 0.680±0.092
Worst 2.99 1.96 6.28 3.14

Fevals±StE - - - 593150±0

LJ8 Success 0% 10% 0% 0%
Best 0.006 0.0 4.54 2.18E-05

Mean±StE 1.32±0.133 0.600±0.125 6.80±0.158 0.588±0.122
Worst 4.06 4.90 9.08 3.61

Fevals±StE - 426536±14487 - -

LJ9 Success 0% 2% 0% 0%
Best 1.15 0.0 2.40 6.85E-06

Mean±StE 3.89±0.203 1.44±0.215 10.07±0.280 2.27±0.282
Worst 7.92 6.47 12.94 7.15

Fevals±StE - 444251±0 - -

LJ10 Success 0% 0% 0% 0%
Best 0.143 0.328 10.67 0.006

Mean±StE 6.33±0.319 3.34±0.411 14.02±0.199 4.27±0.491
Worst 11.33 11.62 16.53 11.83

Fevals±StE - - - -

LJ11 Success 0% 2% 0% 0%
Best 5.32 0.0 15.01 0.152

Mean±StE 9.90±0.300 4.20±0.384 18.51±0.207 5.80±0.615
Worst 13.93 10.81 22.29 16.68

Fevals±StE - 521437±0 - -

Table A.34: Results for single-point adaptive DRS using rule 3 on Lennard-Jones problems 2–11
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP K PHI

LJ12 Success 0% 0% 0% 0%
Best 10.78 2.17 18.40 2.81

Mean±StE 14.80±0.282 7.91±0.622 23.22±0.222 9.42±0.787
Worst 19.36 18.04 26.16 21.33

Fevals±StE - - - -

LJ13 Success 0% 0% 0% 0%
Best 13.73 4.01 25.83 4.98

Mean±StE 20.55±0.366 11.80±0.537 29.64±0.218 13.15±0.955
Worst 24.28 20.78 31.98 27.68

Fevals±StE - - - -

LJ14 Success 0% 0% 0% 0%
Best 18.80 4.01 28.53 6.72

Mean±StE 24.15±0.315 15.00±0.839 32.94±0.217 16.98±1.15
Worst 29.80 27.21 35.78 32.16

Fevals±StE - - - -

LJ15 Success 0% 0% 0% 0%
Best 23.14 4.19 32.27 8.08

Mean±StE 28.32±0.322 16.95±0.818 37.24±0.208 19.98±1.16
Worst 32.09 28.37 39.98 34.73

Fevals±StE - - - -

LJ16 Success 0% 0% 0% 0%
Best 25.80 4.49 36.63 7.88

Mean±StE 32.45±0.353 21.82±1.03 41.88±0.219 22.04±1.35
Worst 37.62 33.94 44.87 38.42

Fevals±StE - - - -

LJ17 Success 0% 0% 0% 0%
Best 30.52 7.58 41.83 12.87

Mean±StE 37.13±0.408 24.43±1.06 46.04±0.228 29.03±1.60
Worst 42.20 38.78 49.41 45.09

Fevals±StE - - - -

LJ18 Success 0% 0% 0% 0%
Best 38.82 13.67 46.54 15.72

Mean±StE 43.23±0.261 27.00±0.932 51.00±0.249 32.24±1.60
Worst 47.29 43.92 54.53 49.61

Fevals±StE - - - -

LJ19 Success 0% 0% 0% 0%
Best 44.26 17.84 52.91 18.49

Mean±StE 49.28±0.336 33.83±1.15 57.30±0.228 37.44±1.52
Worst 53.42 49.17 60.59 55.48

Fevals±StE - - - -

LJ20 Success 0% 0% 0% 0%
Best 45.13 19.45 56.44 21.54

Mean±StE 53.59±0.409 36.66±1.16 61.87±0.228 42.98±1.64
Worst 58.92 52.36 64.51 59.10

Fevals±StE - - - -

LJ26 Success 0% 0% 0% 0%
Best 80.37 35.32 88.66 51.03

Mean±StE 84.92±0.285 68.18±1.46 93.05±0.285 74.46±1.70
Worst 88.98 86.80 96.29 91.56

Fevals±StE - - - -

LJ38 Success 0% 0% 0% 0%
Best 145.2 112.0 154.9 119.4

Mean±StE 150.3±0.265 137.4±1.58 158.7±0.297 141.1±1.62
Worst 153.8 153.1 162.7 156.0

Fevals±StE - - - -

Table A.35: Results for single-point adaptive DRS using rule 3 on Lennard-Jones problems 12–20, 26,
and 38
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f1 Success rate 100% 100% 100% 100% 100%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Worst 0.0 0.0 0.0 0.0 0.0

FEvals±StE 76748±847 165019±12498 102079±9413 49377±1506 71623±4449

f2 Success rate 0% 0% 0% 0% 0%
Best 3.61E-5 3.79E-8 5.64E-9 1.44E-4 2.58E-9

Mean±StE 3.36E-3±1.21E-3 4.6±2.41 4.02±1.67 24.2±14.8 2.4±1.36
Worst 5.14E-2 110.1 74.0 625.2 59.4

FEvals±StE - - - - -

f3 Success rate 0% 0% 0% 0% 0%
Best 2.72E-5 3.68E-5 1.30E-3 1.93E-2 4.27E-2

Mean±StE 8.48±1.18 10.7±2.54 15.23±3.29 12.69±3.18 23.11±4.29
Worst 33.1 78.1 80.3 122.5 101.3

FEvals±StE - - - - -

Table A.36: Results for multi-point adaptive DRS using rule 3 on unimodal problems

PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f4 Success rate 0% 0% 0% 0% 0%
Best 829 1304 948 1303 1421

Mean±StE 1576±39 1827±37 1952±72 2399±74 2451±77
Worst 2013 2606 3079 3435 4905

FEvals±StE - - - -

f5 Success rate 0% 0% 32% 0% 4%
Best 2.98 2.9E-13 0.0 7.96 0.0

Mean±StE 9.19±0.64 10.15±1.69 11.72±2.22 42.76±4.23 33.63±4.45
Worst 21.89 54.72 56.7 155.8 120.3

FEvals±StE - - 407830±12921 - 507970±7934

f6 Success rate 100% 54% 12% 54% 54%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 2.3E-2±2.3E-2 4.2E-2±2.9E-2 2.2E-1±7.4E-2 5.9E-2±4.2E-2
Worst 0.0 1.16 1.16 1.90 1.78

FEvals±StE 226790±9485 243202±15192 281326±17253 128688±10360 290879±17450

f7 Success rate 94% 92% 78% 72% 64%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 4.4E-4±2.5E-4 6.9E-4±3.4E-4 2.4E-3±7.1E-4 4.6E-3±1.6E-3 4.1E-3±1.5E-3
Worst 7.4E-3 9.86E-3 2.22E-2 7.06E-2 4.89E-2

FEvals±StE 70276±704 108654±10090 130082±11133 55843±3232 76485±3606

f8 Success rate 96% 100% 100% 80% 92%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 4.2E-3±2.9E-3 0.0±0.0 0.0±0.0 0.104±0.047 0.012±0.006
Worst 0.104 0.0 0.0 1.88 0.21

FEvals±StE 95725±630 133990±12357 111774±9765 83489±5933 103202±6399

f9 Success rate 98% 94% 86% 84% 88%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 2.2E-4±2.2E-4 6.6E-4±3.7E-4 1.7E-3±6.4E-4 1.8E-3±5.8E-4 1.3E-3±5.1E-4
Worst 0.011 0.011 0.021 0.011 0.011

FEvals±StE 91635±454 136680±13718 138086±12368 69216±3522 96477±7311

Table A.37: Results for multi-point adaptive DRS using rule 3 on complex multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting NP+K NP+φ K+φ NP+K+φ

f10 Success rate 98% 94% 98% 84% 78%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.0163±0.0163 0.049±0.028 0.0163±0.0163 0.131±0.043 0.18±0.048
Worst 0.816 0.816 0.816 0.816 0.816

FEvals±StE 5622±122 5873±153 6743±279 13050±2734 9675±1938

f11 Success rate 98% 100% 100% 98% 100%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 1.62±1.62 0.0±0.0 0.0±0.0 1.62±1.62 0.0±0.0
Worst 81.0 0.0 0.0 81.0 0.0

FEvals±StE 6198±134 6685±204 6546±211 6074±247 7019±400

f12 Success rate 98% 96% 88% 88% 78%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.134±0.134 0.299±0.209 0.751±0.297 0.8±0.314 1.63±0.439
Worst 7.47 7.47 7.47 7.47 7.52

FEvals±StE 16839±1415 30241±3311 19012±1539 17745±2018 19559±4805

f13 Success rate 98% 100% 96% 88% 94%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.134±0.134 0.0±0.0 0.267±0.187 0.739±0.292 0.401±0.227
Worst 6.68 0.0 6.68 6.68 6.68

FEvals±StE 31861±2111 38291±5443 21322±1063 25582±3465 35413±4748

f14 Success rate 100% 100% 100% 88% 94%
Best 0.0 0.0 0.0 0.0 0.0

Mean±StE 0.0±0.0 0.0±0.0 0.0±0.0 0.804±0.311 0.392±0.222
Worst 0.0 0.0 0.0 6.7 6.7

FEvals±StE 25119±1795 34304±2816 24129±2343 18384±1271 23639±2081

Table A.38: Results for multi-point adaptive DRS using rule 3 on simple multimodal problems
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP+K NP+PHI K+PHI NP+K+PHI

LJ2 Success 100% 0% 100% 2% 4%
Best 0.0 2.98E-14 0.0 0.0 0.0

Mean±StE 0.0±0.0 2.3E-10±7.7E-11 0.0±0.0 9.8E-11±3.6E-11 1.2E-10±4.0E-11
Worst 0.0 3.04E-09 0.0 1.63E-09 1.42E-09

Fevals±StE 7601±753 - 7196±745 197951±0 145102±98337

LJ3 Success 22% 0% 80% 0% 2%
Best 0.0 3.82E-09 0.0 6.02E-11 0.0

Mean±StE 3.2E-06±1.5E-06 0.001±2.5E-04 1.5E-06±8.5E-07 0.001±3.1E-04 9.4E-04±4.1E-04
Worst 7.25E-05 0.010 3.78E-05 0.011 0.020

Fevals±StE 417959±36851 - 101060±18613 - 205026±0

LJ4 Success 20% 0% 92% 0% 10%
Best 0.0 1.45E-09 0.0 1.95E-14 0.0

Mean±StE 2.7E-05±1.5E-05 0.038±0.015 1.8E-05±1.8E-05 0.079±0.019 0.052±0.019
Worst 7.17E-04 0.514 8.91E-04 0.622 0.651

Fevals±StE 361428±27471 - 119381±12254 - 312891±49000

LJ5 Success 6% 0% 84% 0% 20%
Best 0.0 1.06E-06 0.0 7.78E-07 0.0

Mean±StE 0.001±3.9E-04 0.455±0.090 8.4E-06±5.1E-06 0.334±0.072 0.444±0.094
Worst 0.014 2.43 2.25E-04 1.74 2.23

Fevals±StE 522557±57857 - 187843±13722 - 329891±34988

LJ6 Success 0% 0% 2% 0% 0%
Best 3.22E-04 0.240 0.0 0.014 1.94E-06

Mean±StE 0.335±0.023 1.63±0.157 0.371±0.020 1.41±0.163 1.21±0.154
Worst 0.530 4.34 0.659 4.53 3.93

Fevals±StE - - 168239±0 - -

LJ7 Success 0% 0% 8% 0% 2%
Best 0.002 1.17E-04 0.0 6.12E-04 0.0

Mean±StE 0.779±0.091 3.20±0.281 0.476±0.079 3.40±0.281 2.86±0.343
Worst 2.99 6.45 1.97 7.13 7.93

Fevals±StE - - 346136±72266 - 429834±0

LJ8 Success 0% 0% 12% 0% 2%
Best 0.006 1.02 0.0 0.297 0.0

Mean±StE 1.32±0.133 5.77±0.338 0.522±0.137 4.92±0.415 4.26±0.452
Worst 4.06 9.66 5.23 10.12 9.49

Fevals±StE - - 333654±75485 - 385249±0

LJ9 Success 0% 0% 4% 0% 0%
Best 1.15 1.92 0.0 0.761 6.23E-06

Mean±StE 3.89±0.203 9.26±0.453 1.57±0.287 7.14±0.548 7.19±0.660
Worst 7.92 14.17 8.73 13.55 13.99

Fevals±StE - - 316426±49634 - -

LJ10 Success 0% 0% 0% 0% 0%
Best 0.143 2.50 1.07E-07 2.56 8.13E-06

Mean±StE 6.33±0.319 12.69±0.495 2.54±0.354 11.92±0.615 10.73±0.700
Worst 11.33 17.12 11.76 17.63 17.50

Fevals±StE - - - - -

LJ11 Success 0% 0% 0% 0% 0%
Best 5.32 6.34 0.002 1.66 1.49

Mean±StE 9.90±0.300 17.04±0.439 3.31±0.317 16.65±0.565 14.86±0.782
Worst 13.93 21.13 8.63 20.87 20.77

Fevals±StE - - - - -

Table A.39: Results for multi-point adaptive DRS using rule 3 on Lennard-Jones problems 2–11
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PSO-DRS PSO-DRS PSO-DRS PSO-DRS PSO-DRS
Adapting Fixed NP+K NP+PHI K+PHI NP+K+PHI

LJ12 Success 0% 0% 0% 0% 0%
Best 10.78 13.65 1.72 4.32 2.40

Mean±StE 14.80±0.282 21.95±0.463 6.92±0.785 20.91±0.794 19.88±0.889
Worst 19.36 26.44 21.05 27.56 26.53

Fevals±StE - - - - -

LJ13 Success 0% 0% 0% 0% 0%
Best 13.73 16.91 3.89 14.07 13.17

Mean±StE 20.55±0.366 28.17±0.487 9.57±0.800 26.67±0.715 26.86±0.542
Worst 24.28 32.95 26.08 33.47 31.73

Fevals±StE - - - - -

LJ14 Success 0% 0% 0% 0% 0%
Best 18.80 27.09 4.01 12.98 7.68

Mean±StE 24.15±0.315 31.84±0.307 13.93±1.15 28.97±0.723 30.12±0.843
Worst 29.80 35.04 29.98 36.29 35.83

Fevals±StE - - - - -

LJ15 Success 0% 0% 0% 0% 0%
Best 23.14 28.08 1.91 22.89 16.31

Mean±StE 28.32±0.322 36.53±0.340 15.44±1.28 35.44±0.552 34.08±0.785
Worst 32.09 40.19 34.03 40.88 41.17

Fevals±StE - - - - -

LJ16 Success 0% 0% 0% 0% 0%
Best 25.80 35.43 2.50 21.32 16.36

Mean±StE 32.45±0.353 41.29±0.317 18.09±1.52 38.35±0.794 37.13±1.00
Worst 37.62 44.63 40.81 45.49 45.58

Fevals±StE - - - - -

LJ17 Success 0% 0% 0% 0% 0%
Best 30.52 25.50 4.13 23.79 8.85

Mean±StE 37.13±0.408 45.21±0.550 22.53±1.63 43.71±0.720 41.66±1.22
Worst 42.20 52.80 44.94 49.55 50.41

Fevals±StE - - - - -

LJ18 Success 0% 0% 0% 0% 0%
Best 38.82 39.57 1.68 23.09 28.29

Mean±StE 43.23±0.261 50.04±0.515 25.79±1.88 48.33±0.934 48.71±0.766
Worst 47.29 54.80 50.57 55.48 55.60

Fevals±StE - - - - -

LJ19 Success 0% 0% 0% 0% 0%
Best 44.26 48.92 3.25 34.07 19.97

Mean±StE 49.28±0.336 56.23±0.365 25.12±1.99 53.74±0.807 53.38±1.17
Worst 53.42 60.86 53.13 61.91 60.78

Fevals±StE - - - - -

LJ20 Success 0% 0% 0% 0% 0%
Best 45.13 55.86 9.40 44.89 24.91

Mean±StE 53.59±0.409 61.79±0.281 34.55±2.20 60.01±0.509 58.55±1.01
Worst 58.92 65.94 60.17 64.77 65.45

Fevals±StE - - - - -

LJ26 Success 0% 0% 0% 0% 0%
Best 80.37 81.67 22.03 74.81 64.96

Mean±StE 84.92±0.285 92.57±0.392 57.86±2.61 89.80±0.660 88.39±1.14
Worst 88.98 96.86 90.99 96.99 96.45

Fevals±StE - - - - -

LJ38 Success 0% 0% 0% 0% 0%
Best 145.2 149.4 81.25 139.4 120.1

Mean±StE 150.3±0.265 157.7±0.381 127.1±3.29 156.0±0.822 152.9±1.09
Worst 153.8 162.0 154.3 163.6 163.5

Fevals±StE - - - - -

Table A.40: Results for multi-point adaptive DRS using rule 3 on Lennard-Jones problems 12–20, 26,
and 38
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Publications

The following publications were derived from or influenced by this work:

D. Bratton and J. Kennedy., Defining a Standard for Particle Swarm Optimization. In Proc of the

Swarm Intelligence Symposium, pages 120127, Honolulu, Hawaii, USA, 2007. IEEE.

D. Bratton and T. Blackwell., Understanding Particle Swarms through Simplification: A Study of

Recombinant PSO. In Proc. of the GECCO-2007 Workshop on Particle Swarms: The Second Decade,

London, UK, 2007.

D. Bratton and T. Blackwell., A Simplified Recombinant PSO. J. Artif. Evol. App., 2008:14:114:10,

January 2008.

R. Poli, D. Bratton, T. Blackwell, and J. Kennedy., Theoretical Derivation, Analysis and Empirical

Evaluation of a Simpler Particle Swarm Optimiser. In IEEE Congress on Evolutionary Computation,

pages 1955-1962, 2007.

T. Blackwell and D. Bratton., Origin of bursts. In Proc. of the GECCO-2007 Workshop on Particle

Swarms: The Second Decade, London, UK, 2007.

T. Blackwell and D. Bratton., Examination of Particle Tails. J. Artif. Evol. App., 2008:18:118:10,

January 2008.
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