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Abstract. Particle Swarm Optimization (PSO) is a popular population-based search algorithm
that has been applied to all kinds of complex optimization problems. Although the performance
of the algorithm strongly depends on the social topology that determines the interaction between
the particles during the search, current Metaheuristic Optimization Frameworks (MOFs) provide
limited support for topologies. In this paper, we present an approach to support generic topologies
in distributed PSO algorithms within a framework for the development and execution of population-
based metaheuristics in Spark, which is currently under development.

1 Introduction

Parallel population-based metaheuristics [6] are common approaches to the optimization of large-scale
problems because of their potential to obtain a satisfactory solution within a reasonable time. However,
implementing scalable and efficient parallel metaheuristics requires knowledge of the underlying software
platform and hardware architecture. Metaheuristic Optimization Frameworks (MOFs) provide customizable
parallel implementations of the most popular metaheuristics, but there are significant differences in the
level of support for parallelism and execution performance they provide [16,23]. Furthermore, although
distributed frameworks for Big Data, like Spark or Flink, have allowed to apply parallel metaheuristics at
an unprecedented scale, MOFs support to these frameworks is very limited.

Particle Swarm Optimization (PSO) [14] is a population-based metaheuristic inspired by the collective
behavior of flocks of birds that is very popular because it has a simple algorithmic description and has
been successfully applied to a great variety of optimization problems. PSO represents the set of candidate
solutions as a swarm of particles that traverse a multidimensional search space seeking the optimum. The
interaction between particles during the search is determined by a social topology [15,18] that dictates
the grouping of particles into neighborhoods where information is shared. Even though topologies are
fundamental in the performance of PSO, most MOFs only support the gbest topology.

In this paper, we present an approach that aims to overcome the aforementioned limitations by
providing support for generic topologies in distributed PSO algorithms. The approach is implemented
within a framework for the development and execution of population-based metaheuristics in Spark, which
is currently under development. The rest of the paper is organized as follows: section 2 summarizes the
related work; section 3 briefly introduces PSO and topologies; in section 4 the proposed approach is
described; a preliminary experimental evaluation is presented in section 5; and section 6 concludes the
paper.

2 Related work

To the best of our knowledge, there are only a few recent studies that compare MOFs and they only
partially address the support for parallel and distributed computing. The comparative study in [16] shows
that there are significant differences in the level of support, if any, that the frameworks provide for parallel
and distributed computing. The analysis in [23] concludes that most MOFs only parallelize the evaluation
of solutions, and only two provide support for both of the most common distributed models, i.e. the
master-worker and the island-based models. Also, experimental evaluation found significant differences in
performance under demanding configurations, both in terms of execution time and memory usage.
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Furthermore, there are only a few proposals of MOFs that support Big Data frameworks. ECJ+Hadoop
[4] is an enhancement to ECJ based on MapReduce that distributes the evaluation of solutions on Hadoop
clusters using a map evaluator. jMetalSP [2] combines jMetal with different streaming engines such as
Spark, Flink or Kafka. In Spark, RDDs are used to distribute the evaluation of solutions. HyperSpark [5]
provides a configurable iterative workflow for the parallel execution in Spark of sequential metaheuristics
as independent tasks, with or without cooperation between them. In [10] a framework to support the
development of parallel evolutionary algorithms (PEAs) in Spark was proposed, and three PSO variants
implemented in a unified way. With the exception of HyperSpark, all the proposals implement a master-
worker model of parallelism, distributing only the evaluation of solutions.

With regard to PSO, some proposals implement parallel PSO variants on frameworks for Big Data.
Examples using MapReduce are a constricted PSO, named MRPSO, in [19]; a cooperative PSO in [25];
or a quantum-behaved PSO in [27]. In [7] implementations in Hadoop and Spark are compared with a
problem of energy optimization in buildings. Examples of implementations in Spark are a Cooperative
co-Evolution PSO in [3]; a quantum-behaved PSO in [28]; or an hybridized island-based PSO in [12]. There
are also applications to real problems, like the efficient utilization of water resources [17]; the training of
Recurrent Neural Networks [26]; or clustering problems [1]. As far as we know, only MRPSO has support
for different static or dynamic topologies, although only results for the gbest topology are reported in [19].

3 The PSO algorithm

The synchronous canonical PSO [13], in which all particles are updated at once, was used as a reference
in this work, combined with different variants of the velocity update equation, i.e. the standard 2007 and
the constricted and condensed constricted forms. Each particle stores its current position, velocity, fitness,
and its best historical position and fitness. Positions and velocities are assumed to be D-dimensional
vectors of real values.

3.1 Social topology

The influence of other particles is determined by the social topology, that dictates which particles are part
of a neighborhood and the information shared between them. Originally, two topologies were proposed: (i)
Global best (gbest), all particles form a unique neighborhood; and (ii) Local best (lbest), particles are
influenced by its adjacent neighbors, usually two, following a Ring topology. In both of them, particles
share their best position with their neighbors and the best of the neighborhood is used to update the
velocity. As the topology highly influences the performance of the algorithm and there is no topology
that is the best for all problems, different topologies have been studied [15, 18], including static (e.g.
Von Newmann, Pyramidal, or Four Clusters), spacial (i.e. formed based on distance between particles),
dynamic and adaptive structures, as well as other models of influence not based only on the best particle
of the neighborhood, e.g. the Full Informed PSO (FIPS) [20].

We have analyzed the support for PSO topologies provided out of the box by four of the most widely
used MOFs: Paradiseo (v3.0.0) [9], ECJ (v27) [24], HeuristicLab (v3.3.16) [11] and JMetal (v6.0) [8]. Our
findings are summarized in the following:

– With the exception of JMetal, that does not support topologies out of the box, all the MOFs reviewed
support at least the most common static topologies: Ring, Star and Random. ECJ and HeuristicLab
also support dynamic topologies by randomly regenerating the topology at the end of each generation.

– Using the global and/or neighborhood best solution is the only model of influence supported.

4 An approach to support generic topologies

In this section we present a proposal to support generic topologies in distributed PSO algorithms that aims
to overcome the limitations found in MOFs. An early version has been implemented within a framework
for the development and execution of population-based metaheuristics in Spark, which is currently under
development. In our approach, a social topology is composed by three elements:

1. A self boolean value, to indicate whether a particle should be included in its neighborhood.
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Complete (aka GBest, Star, All), Directed Ring, Directed Scale Free, Generalized Petersen, Gnm Random,
Gnp Random Bipartite, Grid, HyperCube, KClusters, Kleinberg’s Small World, Linear, Planted Partition,
Pyramid, Random, Regular (with small-world shortcut [15]), Ring (aka LBest), Scale-Free Network,
Square (aka VonNewman), Star (one particle in the center connected to all the others), Wheel, Windmill
Table 1: Topologies supported out of the box. With few exceptions, the topologies are parameterizable,
e.g. for the Ring topology, the generalized version with k neighbors is provided.

2. A topology shape, represented as a DAG (Directed Acyclic Graph) of particle identifiers. Particles are
assumed to have unique identifiers, and an edge pi → pj in the graph indicates that pi is a neighbor
of pj and could share information with it. Table 1 shows the topology shapes currently supported.
Custom topologies (listing 1.1) and importing topologies from GraphViz .dot files are also supported.

3. A model of neighborhood influence, represented as a function that maps particle identifiers to neigh-
borhood influences. To support generic models of influence, two operations were defined by means
of a Scala trait (listing 1.2): (i) contribution, a template method to collect the information shared
by each particle with its neighborhood; and (ii) neighborhoodInfluence, a generic function builder,
called on every swarm move, to instantiate the function that obtains the influence the neighborhood
has on a particle. Different models are instantiated by passing different collect and reduce functions
to neighborhoodInfluence. Currently, the models in [20] (i.e. Best, FIPS, wFIPS, wdFIPS, Self, and
wSelf) are implemented. The instantiated function can then be used in any velocity update equation.
For example, in the condensed form of the constricted equation, it would be called to get I⃗

t

i , the
neighborhood influence on particle i at time t:

v⃗ t+1
i = χ(v⃗ t

i + cmax(I⃗
t

i − x⃗ t
i )) (1)

where x⃗ t
i and v⃗ t

i are the position and velocity of the i-th particle at time t, χ is the constriction factor,
and cmax is the upper limit of coefficients sum.

The proposal was designed with distributed PSO algorithms in mind. The collect-reduce approach
shown in algorithm 1 was applied in the implementation of neighborhoodInfluence. It has two phases:

CustomRing {
topology {

self = true
shape {

name = Custom
neighborhoods {

0: [1, 2, 4],
1: [2, 3, 0],
2: [3, 4, 1],
3: [4, 0, 2],
4: [0, 1, 3]

}
}
neighborhood_influence .name = wdFIPS

}
}

Listing 1.1: Configuration of a custom Ring topology for a swarm of size N=5 with FIPS weighted by
distance model of neighborhood influence and Neighborhood(pi) = {pi, pi+1 mod N, pi+2 mod N, pi−1 mod N }.

trait NeighborhoodOps {
// method to collect the contribution of each particle to the neighborhood
def contribution [T]( pf: ParticleContributionFunction [T]): NeighborhoodContribution [T]
// a generic factory method to instantiate the neighborhood influence function
def neighborhoodInfluence [T,S]( self: Boolean )(t: Topology )(
collect : ParticleContributionFunction [T])(
reduce : NeighborhoodContributionFunction [T,S]): NeighborhoodInfluenceFunction [S]

}

Listing 1.2: Operations added to a swarm to support generic models of neighborhood influence.

Short Papers of the 11th Conference on Cloud Computing Conference, Big Data & Emerging Topics

- 4 -



Algorithm 1 Pseudo-code of neighborhoodInfluence.
Inputs: self; topology; collect(); reduce()
Output: the neighborhood influence function

1: contrib = contribution(collect) ▷ the contribution of each particle is collected
2: for each id in topology do
3: neighbors = topology.predecessors(id) ▷ neighbors are the predecessors in the DAG
4: if self then
5: neighborhood = id ++ neighbors ▷ the particle id is included in the neighborhood
6: else
7: neighborhood = neighbors
8: end if
9: influence[id] = reduce(contrib(id), contrib(neighborhood)) ▷ the influence the neighborhood has on the

particle is calculated and stored in a map indexed by id
10: end for
11: return id ⇒ influence[id] ▷ function that maps particle ids to neighborhood influences

1. The contribution method (line 1) is called to collect the information contributed by each particle of
the swarm. Different implementations are provided for the two swarm states, grouped or distributed,
supported by our framework.

2. The reduce function (line 9) is then used to calculate the influence the neighborhood has on a particle
from the contributions of the particle and its neighbors.

5 Experimental evaluation

Several experiments were performed to validate the proposal, as a preliminary evaluation focused on
debugging and profiling the current implementation and verifying the genericness and correctness of the
approach. All the experiments were carried out in a MacBook Pro M1 Pro with 10-core CPU and 16 GB
RAM using the sequential version of the PSO algorithm implemented in our framework. Due to the space
limitations, only a summary of the results is reported here. Configuration files, logs and detailed analysis
of the results are available in a companion repository [22].

The first series of experiments performed reproduce those in [20]. The same methodology described in
the paper was followed to evaluate the performance, iterations to criteria and proportion reaching criteria
of six models of neighborhood influence (i.e. Best, FIPS, wFIPS, wdFIPS, Self, and wSelf) combined with
five topologies (i.e. Square, Ring, 4-clusters, Pyramid and All), four of which are used in two different
configurations, with and without including the target particle in the neighborhood. Only experiments
with symmetrical initialization were reproduced. The results were obtained by combining the standarized
individual results of five benchmark functions (i.e. Sphere, Rastrigin, Griewank -in two sizes-, Rosenbrock
and Schaffer f6), that were executed 40 times each for each combination with the parameters provided in
the paper.

Although all experiments run successfully, showing the genericness of the proposal, the results were
quite different to those reported in [20] for all the dimensions evaluated. For example, the proportion of
experiments reaching criteria, i.e. the proportion of runs that found the VTR (Value To Reach) within
10,000 iterations, is shown in Table 2. In general, the ratios of success are well below those reported
in [20]. The best results were obtained by the wdFIPS model with a 99.6% ratio for the fully connected
topologies, and the other FIPS variants with ratios higher than 91% for the UAll topology. The worst
results were obtained by the Best model. The Self variants performed best in all cases, except for the fully
connected topologies.

Since the values used for the PSO parameters are not given in [20] or whether any strategies were
used to improve the performance of the algorithm, we decided to conduct a second series of experiments,
reducing the search space of some functions and limiting the velocities and positions of the particles.
Although this time the results showed more similarities, they were still worse in general.

To verify if the difference might be caused by differences in the PSO parameters, a second series
of experiments were carried out to compare the proposal with the PSO implementation of ECJ using
a two-sample Kolmogorov-Smirnov test. The experiments of the first series were repeated using the
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Square Ring 4-Clusters Pyramid All USquare URing UPyramid UAll
Best 0.017 0.021 0.029 0.008 0.008 0.038 0.029 0.008 0.017

FIPS 0.167 0.167 0.217 0.283 0.663 0.167 0.167 0.167 0.917
wFIPS 0.167 0.167 0.167 0.167 0.625 0.167 0.167 0.167 0.917

wdFIPS 0.167 0.167 0.167 0.167 0.996 0.167 0.167 0.167 0.996
Self 0.417 0.546 0.479 0.475 0.375 0.571 0.854 0.446 0.383

wSelf 0.300 0.458 0.379 0.400 0.296 0.633 0.804 0.388 0.354
Table 2: Proportion of the first series of experiments reaching the VTR within 10,000 iterations. In bold
are the best results for each model of neighborhood influence.

Ring Ring4 All Rand4 URing URing4 UAll URand4

PSO-T 0.045 0.015 0.04 0.0 0.02 0.02 0.015 0.0
ECJ 0.04 0.05 0.03 0.005 0.01 0.015 0.005 0.0
Mendes 0.913 0.754 0.908 0.754

Table 3: Ratio of success of our approach (PSO-T) and ECJ for the topologies evaluated. Results from [20]
are also provided when available.

combinations supported by ECJ, i.e. the Best model of influence combined with the Ring, Random
and All topologies, the first two with two different degrees, and the same benchmark functions except
Schaffer f6. This time the results were very similar. The null hypothesis was rejected only in 6 out of the
160 combinations tested at significance level α = 0, 043 and 2 out of 160 at significance level α = 0, 01.
This similarity can also be seen in Table 3, which shows a comparison of the ratio of success. As an
anecdote, thanks to the experiments performed in this comparison, several bugs were detected in the PSO
implementation of ECJ [21] and a pull request with the fix was submitted to the ECJ repository.

6 Conclusions

In this paper, an approach to support generic topologies in distributed PSO algorithms implemented
within a framework for the development and execution of population-based metaheuristics in Spark has
been presented. A preliminary experimental validation of the genericness and correctness of the approach
was carried out using a sequential PSO implementation and different combinations of topologies and
models of neighborhhood influence. To the best of our knowledge, no other MOF provides this level of
genericness for PSO topologies. As future work, it is planned to perform an evaluation of the parallel
performance of the approach and adding support for dynamic topologies in the near term.
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