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Abstract: Localization is a key technology in wireless sensor networks. Faced with the challenges of
the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has
been widely applied in the localization of wireless sensor networks, demonstrating better performance
than other optimization methods. In particle swarm optimization-based localization algorithms, the
variants and parameters should be chosen elaborately to achieve the best performance. However,
there is a lack of guidance on how to choose these variants and parameters. Further, there is no
comprehensive performance comparison among particle swarm optimization algorithms. The main
contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization
variants and particle swarm optimization-based localization algorithms for wireless sensor networks.
Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of
swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of
these algorithms. The results show that the particle swarm optimization with constriction coefficient
using ring topology outperforms other variants and swarm topologies, and it performs better than
the second-order cone programming algorithm.

Keywords: wireless sensor networks; particle swarm optimization; localization; parameter selection;
performance comparison

1. Introduction

Wireless sensor networks (WSNs) are an important infrastructure of the Internet of Things used
for sensing the surrounding information, whose applications can be classified into monitoring and
tracking in the fields of military and public [1]. In these applications, spatial information is one of the
most important contexts of the sensed data, and the location information can support the coverage,
routing, and many other operations of a WSN. However, the sensor nodes of a WSN are usually
deployed in an ad hoc manner without any prior knowledge of their locations, so it is essential to
determine the node’s location, which is referred to as localization.

A possible solution is to equip each sensor node with a global positioning system (GPS) device,
but it is not suitable for large-scale deployment due to the constraints of cost and energy. Hence, only a
part of sensor nodes (named anchors) are equipped with GPS devices. These anchors serve as references
to the other nodes (named unknown nodes), which are to be localized. There exist well-organized
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overviews of sensor localization algorithms [2,3]. Localization consists of ranging and estimation
phases. In the ranging phase, the nodes measure their distances from anchors using received signal
strength, time of arrival, time difference of arrival, link quality indicator, or angle of arrival. In the
estimation phase, the node’s position is estimated based on the ranging information.

A popular estimation approach is to formulate the localization problem as an optimization
problem, and then use an optimization algorithm to solve the problem. Traditional optimization
algorithms are widely used in localization [4–7], such as least square, maximum-likelihood,
semi-determined programming, and second-order cone programming. Recently, soft computing
algorithms have been widely applied to solve this problem [8,9], such as Cuckoo search
algorithm [10], artificial neural network [11], bacterial foraging algorithm [12], bat algorithm [13], and
biogeography-based optimization [9,14].

Particle swarm optimization (PSO) is also an important soft computing algorithm which models
the behavior of a flock of birds. It utilizes a population of particles to represent candidate solutions in a
search space, and optimizes the problem by iteration to move these particles to the best solutions with
regard to a given measure of quality. Compared with the above algorithms, the advantages of particle
swarm optimization are the following [15–17].

1. Ease of implementation on hardware or software.
2. High-quality solutions because of its ability to escape from local optima.
3. Quick convergence.

Recently, PSO has been used in many issues of WSNs [17,18]. This paper focuses on the PSO-based
localization algorithms for static WSNs, where all sensors are static after deployment. Some PSO-based
localization algorithms with different population topologies are compared in Cao et al. [19]. However,
they do not consider the recently-proposed PSO-based localization algorithms, nor do they give
parameter selections. The existing PSO’s parameter selection guidelines [16] are not based on the
objective function in localization problem of WSN, so these parameters cannot achieve the optimal
localization performance.

The main contributions of this paper are as follows.

1. It surveys the popular particle swarm optimization variants and particle swarm optimization-based
localization algorithms for wireless sensor networks.

2. It presents parameter selection of nine particle swarm optimization variants and six types of
swarm topologies by extensive simulations.

3. It comprehensively compares the performance of these algorithms.

The rest of the paper is organized as follows. The localization problem and PSO are introduced
in Section 2. Section 3 surveys the PSO-based localization algorithms, and Section 4 presents their
parameter selections. Section 5 compares the performance of PSO-based localization algorithms.
Section 6 concludes the paper and presents the future work.

2. Statements of Localization Problem and PSO

2.1. Localization Problem for Static WSNs

A WSN is a network of N sensor nodes, including NA anchors and NU unknown nodes, where
NA � NU . The WSN is deployed in a two-dimensional region of interest at random. The region is
often assumed as a square of side-length L. Suppose all the sensor nodes have the same communication
range, which is a circle of radius R. Two sensor nodes are called neighbors if one of them lays in the
communication range of the other, and the distance between them can be measured. Obviously,
an unknown node can be localized if it has at least three neighboring anchors.

Since NA � NU , the localization of static WSNs is an iterative procedure. The unknown nodes
with at least three neighboring anchors are localized first, and then the other unknown nodes are
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localized based on the information of neighboring anchors and localized unknown nodes iteratively.
Both the anchors and localized unknown nodes are called reference nodes in this paper.

During localization, suppose an unknown node Uj (j = 1, 2, · · · , NU) has n neighboring reference
nodes. Let d̂kj be the measured distance between Uj and reference node Bk (k = 1, 2, · · · , n),
(x̂uj , ŷuj), and (xuj , yuj) be the estimated and actual positions of Uj, and (xbk

, ybk
) be the position

of Bk. Then, the localization result should satisfy

d̂kj =
√
(x̂uj − xbk

)2 + (ŷuj − ybk
)2 . (1)

The distances measured by any ranging method are inaccurate, so it is impossible to find an
accurate solution to (1). Let d̃kj be the right part of (1), and be referred to as estimated distance. Obviously,

d̃kj 6= d̂kj (2)

because of the inaccurate measured distances. Then, the purpose of localization is to minimize the
difference between d̂kj and d̃kj, which is

f1 =
n

∑
k=1

(
d̂kj − d̃kj

)2
. (3)

For most ranging techniques, the measurement error is related to the distance between the
two sensor nodes, and larger distances cause larger error [20]. Hence, weight wk is introduced so that
the nearer neighboring reference nodes a play greater role in localization, as shown in (4).

f2 =
n

∑
k=1

wk

(
d̂kj − d̃kj

)2
, (4)

where wk is the weight of the neighboring reference node Bk of Uj, defined as

wk =

1
d̂kj

∑n
k=1

1
d̂kj

. (5)

Besides, the following equations are also discussed in related literature:

f3 =
1
n

f1 (6)

f4 =
1
n

f2 (7)

which are, respectively, the average of f1 and f2 on number of neighboring reference nodes n.
Equations (3), (4), (6) and (7) are called objective functions.

2.2. Particle Swarm Optimization

The PSO-based localization algorithm uses PSO to solve one of the above objective functions.
Because the WSN considered in this paper is in a two-dimensional region, the search space of the PSO
is constrained to two-dimensions.

Let M be the number of particles of the PSO. Particle i occupies three two-dimensional vectors
Pi, Qi, and Vi, representing its current location, previous best position, and current velocity. Besides,
Gb denotes the position of the best particle so far. In each iteration, particle i updates its position and
velocity according to the following equations.
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Vij = ωVij + c1 ϕ1j(Qij − Pij) + c2 ϕ2j(Gbj − Pij)

Pij = Pij + Vij
j = 1, 2, (8)

where c1 and c2 are cognitive and social acceleration coefficients, respectively, ϕ1j and ϕ2j are random
numbers uniformly distributed in (0, 1), and ω is the inertia weight. c1 propels the particle towards
the position where it had the best fitness, while c2 propels the particle towards the current best
particle. The stochastic Vi may become too high to keep all particles in the search space. Hence, Vmax is
introduced [16] to bound Vij within the range [−Vmax, Vmax].

ω is an important parameter. Linearly decreasing and simulated annealing types are the best ones
of all adjustment methods [21]. Due to the computational and memory constraints of sensor nodes, the
linearly decreasing method is adopted in many PSO-based localization algorithms, which is

ω = ωmax −
ωmax −ωmin

tmax
× t (9)

where tmax is the maximum number of allowable iterations, ωmax and ωmin are maximum and
minimum weights, respectively, and t is the current iteration.

As we can see, PSO needs each particle to communicate/connect with the other particles to obtain
Gb. The connections among particles are called topology. There are two kinds of topologies: global-best
and local-best. The former allows each particle to access the information of all other particles, and
the latter only allows each particle to access the information of its neighbors according to different
local-best topology [22,23]. Because each particle has a different swarm of neighboring particles in its
local-best topology, this topology ensures that the particles have full diversity. Local-best topology
uses Lbi instead of Gb to represent the best position of the neighboring particles of particle i, and its
update function is:

Vij = ωVij + c1 ϕ1j(Qij−Pij) + c2 ϕ2j(Lbij−Pij)

Pij = Pij + Vij
j = 1, 2. (10)

Here, c2 propels the particle towards the current best particle within the corresponding sub-swarm
of this particle. The most popular local-best swarm topologies include:

1. Ring topology: Each particle is affected by its k immediate neighbors.
2. Star/Wheel topology: Only one particle is in the center of the swarm, and this particle is influenced

by all other particles. However, each of the other particles can only access the information of the
central particle.

3. Pyramid topology: The swarm of particles are divided into several levels, and there are 4l particles
in level l (l ≥ 0), which form a 2l × 2l mesh.

4. Von Neumann topology: All particles are connected as a toroidal, and each particle has four
neighbors, which are above, below, left, and right particles.

5. Random topology: Each particle chooses neighbors randomly at each iteration. We utilize the
second algorithm proposed in [24] to generate the random topology.

2.3. Evaluation Criteria of PSO-Based Localization Algorithms

1. Localization error. The localization error of unknown node Uj is defined as

Ej =
1
R

√
(x̂uj − xuj)

2 + (ŷuj − yuj)
2. The mean and standard deviation of localization error

are denoted by E and σE, respectively.
2. Number of iterations. This is the number of iterations of PSO to achieve the best fitness. The mean

and standard deviation of the number of iterations are denoted by Itr and σItr, respectively.



Sensors 2017, 17, 487 5 of 18

In WSN applications, the localization error depends on ranging error, GPS error, localization error
accumulation, and the localization algorithm. The ranging error results from the distance measurement
technique, and the GPS error determines the errors of anchors’ positions. Both ranging and GPS errors
are assumed to obey Gaussian distribution, and they are denoted by e. The accumulated localization
error comes from the iterative localization procedure: some unknown nodes may utilize localized
unknown nodes to localize themselves, while the positions of these localized unknown nodes already
have localization error.

3. A Survey of PSO-Based Localization Algorithms

3.1. Basic Procedure of PSO-Based Localization Algorithms

After measuring the distance between sensor nodes, each unknown node estimates its location by
Algorithm 1. In this algorithm, Line 1 determines the particles’ search space, which is the intersection
region of the radio range of all neighboring reference nodes of this sensor node. After initialization in
Line 2, it uses an iterative process to estimate the position (Lines 3 to 7). Note that the update process
of Line 6 is different according to different PSO-based localization algorithms.

Algorithm 1 PSO-Based Localization Algorithm
1: Determine the particles’ search space.
2: Initialize a swarm of particles in the search space with random positions and velocities.
3: while stop criteria are not met do

4: Compute the fitness values of all particles.
5: Compute Qi, Lbi, and/or Gb.
6: Update each particle.
7: end while

3.2. PSO-Based Localization Algorithms

The basic PSO algorithm using (8) is the most popular one among all PSO-based localization
algorithms, and we use WPSO (weighted-PSO) to represent it for convenience.

The first WPSO-based localization algorithm was proposed in [25], which uses (6) as the objective
function. WPSO is also applied to the localization problem of ultra-wide band sensor networks
in [26,27]. In a static sensor network, some unknown nodes may not have enough neighbor anchors
to localize themselves, so [28] applies DV (Distance Vector)-Distance to make all unknown nodes
have distances to at least three anchors, and then it uses WPSO to localize. In order to make WPSO’s
convergence rate fast, [29] introduces a threshold to constrain a change of fitness function. Due to the
inaccurate distance measurements, flip ambiguity is popular during localization, but this problem
is not considered by the aforementioned algorithms. In [30], WPSO in conjunction with two types
of constraints is used to cope with this problem. Besides two-dimensional sensor networks, WPSO
is also applied to localize three-dimensional WSNs [27,31,32] and underwater WSNs [33]. Different
from the above algorithms, a mobile anchor-assisted WPSO-based localization algorithm is proposed
in [20,34], which only uses one mobile anchor to provide distance range to all unknown nodes while it
traverses the sensor network. Besides localization, [35] also applies WPSO to the real-time autonomous
deployment of sensor nodes (including anchors and unknown nodes) from an unmanned aerial vehicle.

Besides WPSO, many variants of PSO algorithms have been proposed to improve the performance.
The most representative algorithms are listed below.

1. Constricted PSO (CPSO). WPSO has the disadvantages of early convergence and swarm explosion,
so CPSO [36] introduces the constriction coefficient χ to conquer these disadvantages:
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Vij =χ(Vij+ϕ1j(Qij−Pij)+ϕ2j(Gbj−Pij))

Pij = Pij + Vij
j = 1, 2, (11)

where χ = 2
|2−c−

√
c2−4c| , c = c1 + c2 > 4.0. CPSO eliminates the Vmax in WPSO. It performs

better than WPSO in many problems [36].
2. H-Best PSO (HPSO). Global- and local-best PSO algorithms have their own advantages and

disadvantages. Combining these two algorithms, HPSO [9,14] divides the particles into several
groups, and particle i is updated based on Gb, Lbi, and Qi, per the following equation:

Vij = ωVij + c1 ϕ1j(Qij − Pij) + c2 ϕ2j(Gbj−Pij)+c3 ϕ3j(Lbij−Pij)

Pij = Pij + Vij
j = 1, 2. (12)

Here, c3 is the same as c2 of (10), and ϕ3j is a random number uniformly distributed in (0, 1).
HPSO provides fast convergence and swarm diversity, but it utilizes more parameters than WPSO.

3. PSO with particle permutation (PPSO). In order to speed up the convergence, PPSO [37] sorts all
particles such that f (Pi) ≤ f (Pj), if i ≤ j, and replaces the positions of particles bM

2 c+ 1 to M
with positions close to P1. The rule of replacement is:

PbM
2 c+k,j = P1j + ρkj j = 1, 2; k = 1, 2, · · · , dM

2 e , (13)

where ρkj is a random number uniformly distributed in (−0.5,0.5).

4. Extremum disturbed and simple PSO (EPSO). Sometimes, PSO easily fall into local extrema.
EPSO [38] uses two preset thresholds T0 and Tg to randomly churn Qi and Gb to overcome
this shortcoming. The operators of extremal perturbation are:

Q′ij = ϕ4jQij, Gb′j = ϕ5jGbj j = 1, 2. (14)

Let t0 and tg be evolutionary stagnation iterations of Qi and Gb, respectively. In (14), if t0 ≤ T0

(tg ≤ Tg), ϕ4j (ϕ5j) is 1; Otherwise, ϕ4j (ϕ5j) is a random number uniformly distributed in [0,1].
For particle i, the update function of EPSO is

Pij = ηijωPij+c1 ϕ1j(Q′ij−Pij)+c2 ϕ2j(Gb′j − Pij) j = 1, 2, (15)

where ηij is used to control the movement direction of particle i to make the algorithm convergence
fast, which is defined as

ηij =
Pij−Gbj√

(Pi1−Gb1)2+(Pi2−Gb2)2
j = 1, 2. (16)

5. Dynamic PSO (DPSO). Each particle in DPSO [19] pays full attention to the historical information
of all neighboring particles, instead of only focusing on the particle which gets the optimum
position in the neighborhood. For particle i, the update function of DPSO is

Pij = Pij + c1(Pij − P′ij) +
c2
K

K
∑

k=1
(Qkj − Pij) +

c3 ϕ3j
K

K
∑

k=1
|Qkj −Qij| j = 1, 2 , (17)

where K is the number of neighboring particles of the ith particle. P′i is the previous position of
the ith particle. Note that c1, c2, and c3 are just weights without physical meaning.
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6. Binary PSO (BPSO). BPSO [39] is used in binary discrete search space, which applies a sigmoid
transformation to the speed attribute in update function, so its update function of particle i is

Vij = ωVij+c1 ϕ1j(Qij−sigmoid(Pij)) +c2 ϕ2j(Gbj − sigmoid(Pij))

Pij = Pij + Vij
j = 1, 2, (18)

where sigmoid(Pij) is defined as

sigmoid(Pij)=

 1 i f ϕ6<2
∣∣∣∣ 1

1+e−Vij
−0.5

∣∣∣∣
0 otherwise

(19)

ϕ6 is a random number.
7. PSO with time variant ω, c1, and c2 (TPSO). TPSO [19] employs time-varying c1, c2, and ω

(see Equation (9)) to achieve proper balance between global and local exploitation, where

c1 = (c1 f − c1s)
t

tmax
+ c1s, c2 = (c2 f − c2s)

t
tmax

+ c2s , (20)

where c1s, c1 f , c2s, and c2 f are initial and final values of c1 and c2, respectively.

8. PSO with particle migration (MPSO) [40]. MPSO enhances the diversity of particles and avoids
premature convergence. MPSO randomly partitions particles into several sub-swarms, each
of which evolves based on TPSO, and some particles migrate from one sub-swarm to another
during evolution.

In one word, the above-mentioned PSO variants aim to overcome one or more drawbacks of
WPSO, but they also introduce additional operations.

3.3. Comparison between PSO and Other Optimization Algorithms

The above-mentioned algorithms are also compared with the other algorithms in corresponding
references, and Table 1 summarizes the comparison results.

Table 1. Advantages of particle swarm optimization (PSO)-based localization algorithms. HPSO:
H-Best PSO; PPSO: PSO with particle permutation; WPSO: weighted-PSO.

Algorithm References Comparative Advantages of PSO

WPSO [12,35] bacterial foraging algorithm faster
WPSO [25] simulated annealing more accurate
WPSO [41] Gauss–Newton algorithm more accurate
WPSO [26,31] least square more accurate
WPSO [42] simulated annealing, semi-definite programming faster, more accurate
WPSO [28] artificial neural network more accurate
WPSO [32] least square faster, more accurate
HPSO [9,14] biogeography-based optimization faster
PPSO [37] two-stage maximum-likelihood, plane intersection faster, more accurate

The bacterial foraging algorithm models the foraging behavior of bacteria that thrive to find
nutrient-rich locations. Each bacterium moves using a combination of tumbling and swimming.
Tumbling refers to a random change in the direction of movement, and swimming refers to moving in
a straight line in a given direction.

The simulated annealing algorithm originated from the formation of crystals from liquids.
Initially, the simulated annealing algorithm is in a high energy state. At each step, it considers
some neighbouring state of the current state, and probabilistically decides between moving the system
to one neighbouring state or staying in the current state. These probabilities ultimately lead the system
to move to states of lower energy.
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Artificial neural networks model the human brain in performing an intelligent task. It integrates
computational units (neurons) in multi-layers, and these layers are connected by adjustable weights.
Three traditional layers are input, hidden, and output.

The biogeography-based optimization algorithm is motivated by the science of biogeography,
which investigates the species distribution and its dynamic properties from past to present spatially
and temporally. In this algorithm, the candidate solutions and their features are considered as
islands and species, respectively. Species migrate among islands, which is analogous to candidate
solutions’ interaction.

4. Parameter Selections of PSO-Based Localization Algorithms

Given a problem to be solved, the performance of a PSO depends on its parameters. Although
theoretical analysis can guide the parameter selection, this analysis can occupy large space, such as [43],
which exceeds the limit of this paper. On the other hand, extensive experimentation has been used
widely in the parameter selection or performance analysis of PSO [15,21,23]. Therefore, we try to
choose the best parameter by experiments instead of theoretical analysis. Because some parameters of
HPSO and PPSO have been calibrated in corresponding references, we only calibrate parameters of
WPSO, CPSO, MPSO, TPSO, BPSO, EPSO, and DPSO, and M and Vmax of PPSO and HPSO.

4.1. Simulation Setup

The PSO-based localization algorithms are implemented in C language, and the results are
analyzed by Matlab. Because our aim is to decide the best parameters, we only perform the
localization procedure on one unknown node, denoted by U1. Suppose the actual position of
U1 is (xu1 , yu1) = (0, 0), and NB reference nodes are deployed within the communication range of
U1. Considering the error e during distance measurements, d̂k1 (k = 1, 2, · · · , NB) is defined as

d̂k1 = dk1 + α , (21)

where dk1 is the real distance between U1 and Bk, α is a random number that follows a normal
distribution with mean 0 and variance dk1e.

The simulation setup is shown in Table 2. For convenience, we use a:b:c to represent the set of
[a, a + b, · · · , c] in this paper. The parameter selection procedure is:

1. Using Vmax = 0.5R and M = 20, 30, 40, 50 to find out the best c1, c2, c3, and ω.
2. Using the best c1, c2, c3 and ω to choose M.
3. Using the best c1, c2, c3, ω and M to choose Vmax.
4. Using the best c1, c2, c3, ω, M and Vmax to compare fitness functions.

Table 2. Simulations setup. CPSO: Constricted PSO; DPSO: Dynamic PSO; EPSO: Extremum disturbed
and simple PSO; MPSO: PSO with particle migration; TPSO: PSO with time variant ω, c1, and c2.

Type Values

network R = 5:10:45, e = 0.05:0.05:0.2, NB = 3:20
General a Vmax = 0.1R:0.1R:2R, M = 5:5:100, tmax = 500
WPSO, EPSO ωmax = 1.4:−0.1:0.9, ωmin = 0.4:−0.1:0, c1 = 1.7:0.1:2.5, c2 = 1.7:0.1:2.5
CPSO c1 = 2.05:0.05:2.5, c2 = 2.05:0.05:2.5
MPSO, TPSO ωmax = 1.4:−0.1:0.9, ωmin = 0.4:−0.1:0, c1i = c2 f = 3:−0.25:0.25, c2i = c1 f = c1−0.25:−0.25:0.25
HPSO ω = 0.7, c1 = c2 = c3 = 1.494
PPSO ω = 1, c1 = c2 = 2.0
BPSO ω = 1.0:−0.1:0, c1 = 1.7:0.1:2.5, c2 = 1.7:0.1:2.5
DPSO c1 = 1.0:0.1:0.1, c2 = 2.5:−0.1:1.5, c3 = 0:0.1:1.0

a The parameters used by all PSO variants.
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We use f3 as the objective function of PSO to choose the best parameters, because it is the most
popular fitness used in PSO-based localization algorithms. The stopping criteria is

f3(X) <= 10−4 ∨ t > tmax , (22)

which means the fitness value f3(X) achieves an allowable precision 10−4 or the number of iteration t
exceeds pre-defined threshold tmax.

We generate 100 tests with each combination of different e, R, and NB, and we utilize each
algorithm to estimate the position of U1 by 100 runs for each test case, under each group of PSO’s
parameters. The results are the average of these runs. A localization algorithm should have the best
performance regardless of NB, because NB is different to each unknown node in real applications of
WSN. Hence, the impacts of NB on parameter selection are not analyzed.

4.2. Best Parameters of PSO-Based Localization Algorithms

Taking the selection of c1 and c2 of WPSO with global-best model as an example, the selection
approach is introduced. We first calibrate c1 and c2 without considering the specific value of e, because
we may not know e during localization. The results are the averages of all e. Figure 1a,b show that the
impacts of c1 and c2 on localization errors are very little: the gap between the minimum and maximum
E (σE) is about 4.42× 10−5 (1.79× 10−4). On the contrary, Figure 1c,d show that Itr and σItr reduce
with the decrease of c1 and c2. With different c1 and c2, the difference between the maximum and
minimum Itr (σItr) is about 31.03 (11.70). The best choices are c1 = 1.7–1.8 and c2 = 1.7–1.8, which
occupy 96.2% optimal number of iterations for all cases. Further, we investigate the impacts of c1 and
c2 on localization performance under each e, and we find that c1 = 1.7–1.8 and c2 = 1.7–1.8 are still the
best choice for each e.
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Figure 1. Localization performance of different c1 and c2 using WPSO with global-best model. (a) E;
(b) σE; (c) Itr; (d) σItr.

Similar approaches have been applied to other parameters and algorithms, and the resulting best
parameters are shown in Table 3. Because MPSO and HPSO already divide the swarm of particles into
several sub-swarms which are similar with local-best models, we only analyze their global-best models.
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Table 3. Parameter selections of PSO-based localization algorithms. BPSO: Binary PSO.

Variant Topology [c1, c2, c3] [ωmax, ωmin] M Vmax

WPSO

global-best [1.7–1.8,1.7–1.8,—] [0.9,0] 30 0.1R
pyramid [1.7,1.7–1.8,—],[1.8,1.7,—] [0.9,0] 21 0.1R
random [1.7,1.7–1.8,—] [0.9,0] 30 0.1R

Von Neumann [1.7,1.7–1.8,—],[1.8,1.7] [0.9,0] 25 0.1R
ring [1.7,1.7–1.8,—],[1.8,1.7,—] [0.9,0] 25 0.1R
star [1.7,1.7–1.8,—],[1.8,1.7,—] [0.9,0] 25 0.1R

CPSO

global-best [2.4,2.5,—],[2.45,2.45–2.5,—] — 10 —
pyramid [2.45,2.5,—],[2.5,2.45–2.5,—] — 21 —
random [2.5,2.5,—] — 10 —

Von Neumann [2.45,2.45–2.5,—],[2.5,2.4–2.5,—] — 10 —
ring [2.45,2.5,—],[2.5,2.4–2.5,—] — 10 —
star [2.4,2.5,—],[2.45,2.45–2.5,—] — 10 —

TPSO

global-best [0.5,0.25,—],[0.75–1,0.25–0.5,—] [0.9,0] 25 0.1R
pyramid [0.5–1,0.25,—],[0.75,0.25–0.5,—] [0.9,0] 21 0.1R
random [0.5,0.25,—],[0.75–1,0.25–0.5,—] [0.9,0] 30 0.1R

Von Neumann [0.5–1.25,0.25,—] [0.9,0] 25 0.1R
ring [0.75–1.25,0.25–0.5,—] [0.9,0] 25 0.1R
star [0.5–1,0.25–0.25,—] [0.9,0] 15 0.1R

PPSO all [2.0,2.0,—] ω = 1.0 20-40 0.1R

EPSO

global-best [2.5,1.7,—] [1.4,0.4] 45 0.1R
pyramid [2.5,1.8,—] [1.4,0.4] 21 0.1R
random [2.4,2.5,—] [0.9,0] 20 0.1R

Von Neumann [2.4,2.5,—] [0.9,0] 30 0.1R
ring [2.4,2.5,—] [0.9,0] 25 0.1R
star [2.4,2.5,—] [0.9,0] 20 0.1R

DPSO

global-best [0.7/0.8,2.1,0.4/0.5] — 75 0.1R
pyramid [0.7/0.8/0.9,2.3,0.4] — 21 0.1R
random [0.9,2.3,0.4] — 30 0.1R

Von Neumann [0.7/0.8/0.9,2.3,0.4] — 35 0.1R
ring [0.7/0.8/0.9,2.3,0.4] — 35 0.1R
star [0.7/0.8,2.1,0.4/0.5] — 45 0.1R

BPSO

global-best [2.1/2.2,1.7,—] ω = 1.4/1.5 75 0.1R
pyramid [2.3/2.4,1.7,—] ω = 1.4 21 0.1R
random [1.9,2.0,—] ω = 1.3/1.4/1.5 75 0.1R

Von Neumann [2.0–2.3,1.7,—] ω = 1.5 80 0.1R
ring [2.1/2.2,1.7,—] ω = 1.4/1.5 35 0.1R
star [2.5,1.9,—] ω = 1.3 80 0.1R

MPSO global-best [1/1.25,0.25/0.5,—],[1.5,0.25,—] [0.9,0] 45 0.1R

HPSO global-best [1.494,1.494,1.494] ω = 0.7 45 0.1R

4.3. Performance Comparison of Fitness Function

Figure 2a,b shows that Itr of f4 is [306.86, 326.41], which is about 89.65%–91.57% of those of f1, f2,
and f3. Figure 2c,d shows that f4 is still the best. In detail, f3 and f4 has almost the same E, which is
[0.035, 0.048]. However, f4 has the minimal σE.

The performance of each fitness function using the other PSO algorithms with different swarm
topologies also shows that f4 outperforms the other functions in all cases.
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Figure 2. Localization performance of different f using WPSO with global-best model.(a) Itr; (b) σItr;
(c) E; (d) σE.

5. Performance Comparisons of PSO-Based Localization Algorithms

5.1. Simulations Setup

The performance of all PSO algorithms is compared by simulations of a whole WSN.
The parameters of each PSO variant are set based on Section 4. During localization, we utilize iterative
localization to localize as many unknown nodes as possible. We also demonstrate the impact of radio
irregularity on the localization performance of different algorithms, because the actual transmission
range of sensor nodes is not a perfect circle due to multi-path fading, shadowing, and noise. The radio
model in [44] is used to represent the degree of irregularity D. Based on this model, there is an
upper bound R and a lower bound (1− D)R of the communication range. The simulation setups are:
L = 100 units, NU = 100:100:500, NA = 10:10:50, R = 25:10:45 units, e = 0:0.05:0.2, D = 0:0.1:0.5.

5.2. Comparisons of Different Swarm Topologies in Same PSO

There are 2250 test cases to simulate, and the best swarm topology should outperform the other
ones in most test cases, instead of in several test cases. Therefore, we count the number of optimal
values of each swarm topology of all test cases, and try to find the topology which achieves the optimal
values in most test cases. The “optimal values” are the evaluation criteria mentioned in Section 2.3.
The results are shown in Figure 3.

For WPSO, Von Neumann and ring topologies perform almost the same, and they outperform the
other topologies. Ring topology can gain the optimal E, σE, Itr, and σItr in more than 93.2%, 99.5%,
98.1%, and 99.5% of test cases, respectively, and Von Neumann topology can gain the optimal E, σE,
Itr, and σItr in more than 93.4%, 99.5%, 97.5%, and 99.5% of test cases, respectively.

It is hard to say which topology is the best for some algorithms, because none of these topologies
performs the best in all four percentages. In this case, we give more importance to E than the
other criteria. Taking PPSO as an example (Figure 3d), its global-best and Von Neumann topologies
are obviously better than the others, but Von Neumann outperforms global-best model in E, while
global-best model is better than Von Neumann in the other three criteria. Since we put E as the first
criterion to choose the best swarm topology, Von Neumann is the best one which achieves optimal E in
more than 92.3% cases, while the percentage of global best model is 70.7%.

Using a similar idea, the best swarm topologies of all algorithms are: ring topology for WPSO,
CPSO, and TPSO; Von Neumann topology for PPSO and DPSO; random topology for EPSO and BPSO.

Furthermore, we compare the performance of different swarm topologies used in the same PSO
algorithm, with different NU , NA, R, D, e one by one, and we find these results are consistent with the
aforementioned results.



Sensors 2017, 17, 487 12 of 18

0

50

100

Itr σItr E
σEpe

rc
en

ta
ge

 (
%

) (a)WPSO

 

 

0

50

100

Itr σItr E σEpe
rc

en
ta

ge
 (

%
) (b)CPSO

0

50

100

Itr σItr E σEpe
rc

en
ta

ge
 (

%
) (c)TPSO

0

50

100

Itr σItr E σEpe
rc

en
ta

ge
 (

%
) (d)PPSO

0

50

100

Itr σItr E σEpe
rc

en
ta

ge
 (

%
) (e)EPSO

0

50

100

Itr σItr E σEpe
rc

en
ta

ge
 (

%
) (f)DPSO

0

50

100

Itr σItr E σEpe
rc

en
ta

ge
 (

%
) (g)BPSO

global−best Von Neumann pyramid random ring star

Figure 3. Percentage of each swarm topology achieving the optimal values. (a) WPSO; (b) CPSO;
(c) TPSO; (d) PPSO; (e) EPSO; (f) DPSO; (g) BPSO.

5.3. Comparison of PSO-Based Localization Algorithms

Using the results introduced in Section 4, the PSO-based localization algorithms are compared.

5.3.1. General Analysis

In general, as shown in Figure 4, CPSO and PPSO needs fewer iterations than the other PSO-based
localization algorithms. In fact, the average Itr of all test cases required by CPSO and PPSO are 220.16
and 222.29, respectively, while those of WPSO, TPSO, MPSO, HPSO, EPSO, DPSO, and BPSO are
312.88, 484.99, 268.84, 281.68, 310.26, 253.52, and 252.47, respectively. σItr of CPSO is also the smallest
(6.67), while σItr of the other algorithms are larger than 10. On the other hand, CPSO and PPSO achieve
the optimal E for more than 89.69% of test cases, and the optimal σE for more than 60.84% of test cases.
Furthermore, the average E and σE of all test cases of CPSO and PPSO are the first two best ones among
all algorithms. CPSO has the least operations during one iteration among all algorithms. Compared
with CPSO, the other algorithms need more parameters and operations such, as Vmax, particle sort,
or migration.

In one word, CPSO is the best PSO-based localization algorithm.
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Figure 4. Percentage of PSO-based localization achieving the optimal values.
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5.3.2. Impacts of Network Parameters on Performance

In order to analyze the impacts of network setups on localization performance, CPSO is taken
as an example, because we find that the other algorithms have the same trends as CPSO, except the
variation range. As illustrated in Figure 5, we cannot draw any rule of the impacts of NU and NA
on Itr, σItr. However, E and σE decrease as NA increases, because the more anchors exist in a WSN,
the less unknown nodes need iterative localization, as shown in Figure 6. Figure 6 shows that the
number of unknown nodes localized by neighboring anchors instead of localized unknown nodes
under NA = 500 is about two times the number under NA = 100.
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Figure 5. Impacts of NU and NA on the localization performance of CPSO. (a) E; (b) σE; (c) Itr; (d) σItr.
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with CPSO.

Table 4 denotes that the variations are very small except σItr. E and σE are almost the same,
but CPSO and PPSO have the smallest Itr.
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Table 4. Variation range of different NU and NA.

Criteria WPSO CPSO TPSO PPSO MPSO HPSO EPSO DPSO BPSO

Itr 311.6–314.9 219.1–221.8 482.4–485.8 220.8–225.6 267.8–270.6 279.6–285.5 304.6–316.6 252.2–254.7 251.1–252.7
σItr 13.91–19.96 3.39–14.92 40.64–50.77 7.86–20.34 9.06–14.57 17.94–27.31 83.20–90.10 0.78–16.83 3.38–19.27
E 0.02–0.04 0.02–0.04 0.02–0.044 0.03–0.05 0.02–0.05 0.02–0.04 0.14–0.27 0.17–0.23 0.06–0.08
σE 0.02–0.09 0.02–0.08 0.02–0.09 0.02–0.08 0.03–0.10 0.02–0.10 0.14–0.41 0.10–0.29 0.06–0.13

From Figure 7a,b, we can see that D impacts the localization error very little, where E (σE) only
differs less than 0.003 (0.006) with the same e and different D. However, e affects the localization error
greatly: a larger e leads to a larger localization error. As shown in Figure 7c, Itr is minimal when
D = e = 0, and it increases significantly when both D and e are greater than 0. However, it keeps
almost the same when D > 0 and e > 0, which can also be proved from Table 5. On the contrary,
σItr reaches maximum when D = e = 0, and it decreases when both D and e are greater than 0,
as shown in Figure 7d.

Table 5 shows that E and σE of EPSO, DPSO, and BPSO are larger than the other algorithms, and
D and e have little impacts on Itr, but σItr varies very much under different D and e.
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Figure 7. Impacts of D and e on localization performance of CPSO. (a) E; (b) σE; (c) Itr; (d) σItr.

Table 5. Variation range of different D > 0 and e > 0.

Criteria WPSO CPSO TPSO PPSO MPSO HPSO EPSO DPSO BPSO

Itr 359.7–366.1 269.2–270.6 485.0–486.7 271.0–273.2 316.6–320.9 327.3–335.5 308.6–311.4 269.3–269.7 262.2–262.6
σItr 13.3–17.65 4.62–7.82 39.99–43.6 9.36–13.62 8.68–12.79 18.65–22.84 85.49–86.80 0.89–2.79 3.47–5.34
E 0.01–0.04 0.01–0.04 0.01–0.04 0.01–0.04 0.01–0.04 0.01–0.04 0.16–0.19 0.17–0.19 0.16–0.17
σE 0.03–0.07 0.03–0.07 0.03–0.07 0.03–0.07 0.03–0.08 0.04–0.08 0.22–0.26 0.17–0.21 0.17–0.19

Figure 8a,b denote that the larger R has higher localization precision. E of EPSO, DPSO, and BPSO
are larger than the other algorithms, while the other algorithms have almost the same E. Moreover,
E of EPSO and DPSO decrease with increasing R, while those of the other algorithms show little
change. σE has the same rule as E, as shown in Figure 8b. Figure 8c,d show that the impacts of R on
the number of iterations are very little, and CPSO and PPSO requires the fewest iterations, while TPSO
needs the most iterations.
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5.4. Comparison between CPSO and SOCP

Table 1 shows the comparison between PSO and the other optimization algorithms. We compare
CPSO and second-order cone programming (SOCP) in this section, because SOCP is also a popular
optimization algorithm used in localization problems [4,5], and CPSO has not been compared with
SOCP. The SOCP algorithm is implemented in Matlab by CVX [45].

As shown in Figure 9, CPSO with global-best model outperforms SOCP under different NU , NA,
D, and e. E and σE of CPSO are 0.0085–0.0684 and 0.0526–0.1311, respectively, and those of SOCP are
0.2909–0.3549 and 0.2707–0.3, respectively. Further, SOCP takes much longer than CPSO. For example,
there are 450 test cases when NU = 100, and SOCP uses 2 hours and 58 minutes to obtain the results,
while CPSO only takes 12 minutes.
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Figure 9. Comparison of CPSO and SOCP. (a) E of different NU and NA; (b) σE of different NU and
NA; (c) E of different D and e; (d) σE of different D and e.

6. Conclusions

As a classical swarm intelligence algorithm, particle swarm optimization has many advantages
over other optimization algorithms to solve the localization problem of wireless sensor networks, and
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many particle swarm optimization-based localization algorithms have been proposed in recent years,
but it lacks of parameter selection and comprehensive comparison of these algorithms. This paper
surveys the existing particle swarm optimization-based localization algorithms, and chooses the
best parameters based on simulations. Further, we compare currently widely-used particle swarm
optimization-based localization algorithms with six types of swarm topologies, and the results show
that particle swarm optimization with constriction coefficient and ring topology is the best choice to
solve the localization algorithm of wireless sensor networks.
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