41 research outputs found
Recommended from our members
Eagle Syndrome: A Rare Case of Atraumatic, Painful Cervical Neck Swelling
Introduction: Painful neck swelling is a common emergency complaint but can present diagnostic challenges. Eagle syndrome is a rare clinical entity in which a pathologically elongated styloid process or ossified stylohyoid ligament produces a constellation of symptoms in the head and neck region.Case Report: We present the case of a 50-year-old male with a spontaneous, atraumatic fracture of an elongated styloid process associated with hematoma formation and radiological findings of airway impingement.Discussion: The classic triad for Eagle syndrome consists of unilateral cervicofacial pain, globus sensation, and dysphagia. Diagnosis of Eagle syndrome should be made based on a combination of physical examination and radiological findings. Treatment options vary based on severity of symptoms.Conclusion: Although more likely to be an indolent and progressive complaint, providers in the acute care setting should be familiar with Eagle syndrome due to the potential for a spontaneous fracture of an elongated styloid process to cause acute, painful neck swelling and life-threatening airway compromise
Combination of Variable Active Site Residues Interact to Modulate Response Regulator Reaction Kinetics
Signal transduction pathways are responsible for sensing and responding to stimuli. Two- component systems are a common type of signaling pathway found in microorganisms and
plants, and are composed of a sensor kinase (SK) and response regulator (RR) protein. Changes in the phosphorylation states of the SK and RR due to environmental stimuli provide a molecular switch to control signal output. RRs possess the catalytic activity for phosphotransfer, but it is not known how closely related RRs self-catalyze phosphorylation and dephosphorylation reactions with rate constants that span
up to six orders of magnitude. Variable residues in the RR active site, named according to their position relative to a conserved aspartic acid (D+2) and threonine residue (T+1 and T+2), individually influence autophosphorylation and autodephosphorylation reaction kinetics by one to two orders of magnitude. Our hypothesis is that certain combinations of variable active site residues interact to produce much larger effects on RR reaction kinetics than the sum of their individual effects. To investigate these interactive properties, we examined existing data on the effects of specific D+2 and T+2 combinations, in the presence of the most common T+1 residue (Ala), that resulted in
synergistic interactivity. To complete characterization of position T+1, the impact of Gly (the second most abundant residue) on reaction kinetics was tested. Finally, the effects of combinations at all three positions on rate constants were tested.
Results show similarity in rate constants between proteins bearing Ala or Gly at T+1, while D+2/T+1/T+2 combinations Asn/Thr/Ser and Arg/Gly/Tyr displayed no interactivity and Asn/Val/Ser was antagonistic. The T+1 results are consistent with the structural similarity of Ala and Gly. To further elucidate interactive properties, combination Arg/Gly/His is currently being investigated; however, a D+2/T+1/T+2 combination displaying synergism has yet to be observed.Bachelor of Scienc
Evaluation of ACCMIP Outgoing Longwave Radiation from Tropospheric Ozone Using TES Satellite Observations.
We use simultaneous observations of tropospheric ozone and outgoing longwave radiation (OLR) sensitivity to tropospheric ozone from the Tropospheric Emission Spectrometer (TES) to evaluate model tropospheric ozone and its effect on OLR simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5-20 ppb) in the Southern Hemisphere (SH) and modest high bias (5-10 ppb) in the Northern Hemisphere (NH) relative to TES ozone for 2005-2010. These ozone biases have a significant impact on the OLR. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean tropospheric ozone low bias leads up to 120mW/ sq. m OLR high bias locally but zonally compensating errors reduce the global OLR high bias to 39+/- 41mW/ sq. m relative to TES data. We show that there is a correlation (Sq. R = 0.59) between the magnitude of the ACCMIP OLR bias and the deviation of the ACCMIP preindustrial to present day (1750-2010) ozone radiative forcing (RF) from the ensemble ozone RF mean. However, this correlation is driven primarily by models whose absolute OLR bias from tropospheric ozone exceeds 100mW/ sq. m. Removing these models leads to a mean ozone radiative forcing of 394+/- 42mW/ sq. m. The mean is about the same and the standard deviation is about 30% lower than an ensemble ozone RF of 384 +/- 60mW/ sq. m derived from 14 of the 16 ACCMIP models reported in a companion ACCMIP study. These results point towards a profitable direction of combining satellite observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing
Extramedullary Hematopoiesis in the Sinonasal Cavity: A Case Report and Review of the Literature
Approximately 1 in 600 African-Americans are homozygous for the sickle cell gene.1 This commonly inherited hematologic disorder causes sickling of red blood cells (RBCs), prompting rapid hemolysis. A common clinical manifestation of sickle cell disease (SCD) is chronic anemia. The body responds by increasing hematopoiesis. RBC production classically occurs in the bone marrow of the long bones, pelvis, spine, and sternum. With chronically elevated erythropoietin levels, organs such as the spleen and liver help augment the body’s RBC supply. These organs are areas of fetal erythropoiesis that do not typically contribute to physiologic RBC production in adults. Other, less commonly involved organs that have been documented as sites of extramedullary hematoposesis (EMH) include lymph nodes, paravertebral regions, intra-spinal canal, pre-sacral region, nasopharynx, and paranasal sinuses
Coronal Magnetic Field Evolution from 1996 to 2012: Continuous Non-potential Simulations
Coupled flux transport and magneto-frictional simulations are extended to simulate the continuous magnetic-field evolution in the global solar corona for over 15 years, from the start of Solar Cycle 23 in 1996. By simplifying the dynamics, our model follows the build-up and transport of electric currents and free magnetic energy in the corona, offering an insight into the magnetic structure and topology that extrapolation-based models cannot. To enable these extended simulations, we have implemented a more efficient numerical grid, and have carefully calibrated the surface flux-transport model to reproduce the observed large-scale photospheric radial magnetic field, using emerging active regions determined from observed line-of-sight magnetograms. This calibration is described in some detail. In agreement with previous authors, we find that the standard flux-transport model is insufficient to simultaneously reproduce the observed polar fields and butterfly diagram during Cycle 23, and that additional effects must be added. For the best-fit model, we use automated techniques to detect the latitude–time profile of flux ropes and their ejections over the full solar cycle. Overall, flux ropes are more prevalent outside of active latitudes but those at active latitudes are more frequently ejected. Future possibilities for space-weather prediction with this approach are briefly assessed
The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing.
Microbial ecology is plagued by problems
of an abstract nature. Cell sizes are so
small and population sizes so large that
both are virtually incomprehensible. Niches
are so far from our everyday experience
as to make their very definition elusive.
Organisms that may be abundant and
critical to our survival are little understood,
seldom described and/or cultured,
and sometimes yet to be even seen. One
way to confront these problems is to use
data of an even more abstract nature:
molecular sequence data. Massive environmental
nucleic acid sequencing, such
as metagenomics or metatranscriptomics,
promises functional analysis of microbial
communities as a whole, without prior
knowledge of which organisms are in the
environment or exactly how they are
interacting. But sequence-based ecological
studies nearly always use a comparative
approach, and that requires relevant
reference sequences, which are an extremely
limited resource when it comes to
microbial eukaryotes.
In practice, this means sequence databases
need to be populated with enormous
quantities of data for which we have
some certainties about the source. Most
important is the taxonomic identity of
the organism from which a sequence is
derived and as much functional identification
of the encoded proteins as possible. In
an ideal world, such information would be
available as a large set of complete, well curated,
and annotated genomes for all the
major organisms from the environment
in question. Reality substantially diverges
from this ideal, but at least for bacterial
molecular ecology, there is a database
consisting of thousands of complete genomes
from a wide range of taxa,
supplemented by a phylogeny-driven approach
to diversifying genomics [2]. For
eukaryotes, the number of available genomes
is far, far fewer, and we have relied
much more heavily on random growth of
sequence databases, raising the
question as to whether this is fit for
purpose
Recommended from our members
Assessing the quality of models of the ambient solar wind
In this paper we present an assessment of the status of models of the global Solar Wind in the inner heliosphere. We limit our discussion to the class of models designed to provide solar wind forecasts, excluding those designed for the purpose of testing physical processes in idealized configurations. In addition, we limit our discussion to modeling of the ‘ambient’ wind in the absence of coronal mass ejections. In this assessment we cover use of the models both in forecast mode and as tools for scientific research. We present a brief history of the development of these models, discussing the range of physical approximations in use. We discuss the limitations of the data inputs available to these models and its impact on their quality. We also discuss current model development trends
Supplement: "Localization and broadband follow-up of the gravitational-wave transient GW150914" (2016, ApJL, 826, L13)
This Supplement provides supporting material for Abbott et al. (2016a). We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. We compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Localization and broadband follow-up of the gravitational-wave transient GW150914
A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams