59 research outputs found

    Aerocapture Inflatable Decelerator for Planetary Entry

    Get PDF
    Forward Attached Inflatable Decelerators, more commonly known as inflatable aeroshells, provide an effective, cost efficient means of decelerating spacecrafts by using atmospheric drag for aerocapture or planetary entry instead of conventional liquid propulsion deceleration systems. Entry into planetary atmospheres results in significant heating and aerodynamic pressures which stress aeroshell systems to their useful limits. Incorporation of lightweight inflatable decelerator surfaces with increased surface-area footprints provides the opportunity to reduce heat flux and induced temperatures, while increasing the payload mass fraction. Furthermore, inflatable aeroshell decelerators provide the needed deceleration at considerably higher altitudes and Mach numbers when compared with conventional rigid aeroshell entry systems. Inflatable aeroshells also provide for stowage in a compact space, with subsequent deployment of a large-area, lightweight heatshield to survive entry heating. Use of a deployable heatshield decelerator enables an increase in the spacecraft payload mass fraction and may eliminate the need for a spacecraft backshell

    The 4-particle hydrogen-antihydrogen system revisited: twofold Hamiltonian symmetry and natural atom antihydrogen

    Full text link
    Modern ab initio treatments of H-Hbar systems are inconsistent with the logic behind algebraic Hamiltonians H(+-)=H(0)+/-deltaH for charge-symmetrical and charge-asymmetrical 4 unit charge systems like H(2) and HHbar. Since these 2 Hamiltonians are mutually exclusive, only the attractive one can apply for stable natural molecular H(2). A wrong choice leads to problems with antiatom Hbar. In line with earlier results on band and line spectra, we now prove that HL chose the wrong Hamiltonian for H(2). Their theory explains the stability of attractive system H(2) with a repulsive Hamiltonian instead of with the attractive one, representative for charge-asymmetrical system HHbar. A new second order symmetry effect is detected. Repulsive HL Hamiltonian H(+) applies at long range but at the critical distance, attractive charge-inverted Hamiltonian H(-)takes over and leads to bond H(2) but in reality, HHbar, for which we give an analytical proof. Another wrong asymptote choice in the past also applies for atomic antihydrogen Hbar, which has hidden the Mexican hat potential for natural hydrogen. This generic solution removes most problems, physicists and chemists experience with atomic Hbar and molecular HHbar, including the problem with antimatter in the Universe.Comment: at the instituional UGent archive, 37 pag, 10 fig, tabb, version as submitted, abstract shortene

    Absorption Bands of Ammonia GAS in the Visible

    Full text link

    Regional differences in APD restitution can initiate wavebreak and re-entry in cardiac tissue: A computational study

    Get PDF
    Background Regional differences in action potential duration (APD) restitution in the heart favour arrhythmias, but the mechanism is not well understood. Methods We simulated a 150 × 150 mm 2D sheet of cardiac ventricular tissue using a simplified computational model. We investigated wavebreak and re-entry initiated by an S1S2S3 stimulus protocol in tissue sheets with two regions, each with different APD restitution. The two regions had a different APD at short diastolic interval (DI), but similar APD at long DI. Simulations were performed twice; once with both regions having steep (slope > 1), and once with both regions having flat (slope < 1) APD restitution. Results Wavebreak and re-entry were readily initiated using the S1S2S3 protocol in tissue sheets with two regions having different APD restitution properties. Initiation occurred irrespective of whether the APD restitution slopes were steep or flat. With steep APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms with S1S2 of 250 ms, to 75 ms (S1S2 180 ms). With flat APD restitution, the range of S2S3 intervals resulting in wavebreak increased from 1 ms (S1S2 250 ms), to 21 ms (S1S2 340 ms) and then 11 ms (S1S2 400 ms). Conclusion Regional differences in APD restitution are an arrhythmogenic substrate that can be concealed at normal heart rates. A premature stimulus produces regional differences in repolarisation, and a further premature stimulus can then result in wavebreak and initiate re-entry. This mechanism for initiating re-entry is independent of the steepness of the APD restitution curve

    Prospective study into the value of the automated Elecsys antimĂŒllerian hormone assay for the assessment of the ovarian growing follicle pool

    Get PDF
    ObjectiveTo evaluate a new fully automated assay measuring antimĂŒllerian hormone (AMH; Roche Elecsys) against antral follicle count in women of reproductive age.DesignProspective cohort study.SettingHospital infertility clinics and academic centers.Patient(s)Four hundred fifty-one women aged 18 to 44 years, with regular menstrual cycles.Intervention(s)None.Main Outcome Measure(s)AMH and antral follicle count (AFC) determined at a single visit on day 2–4 of the menstrual cycle.Result(s)There was a statistically significant variance in AFC but not in AMH between centers. Both AFC and AMH varied by age (overall Spearman rho −0.50 for AFC and −0.47 for AMH), but there was also significant between-center variation in the relationship between AFC and age but not for AMH. There was a strong positive correlation between AMH and AFC (overall spearman rho 0.68), which varied from 0.49 to 0.87 between centers. An agreement table using AFC cutoffs of 7 and 15 showed classification agreement in 63.2%, 56.9% and 74.5% of women for low, medium, and high groups, respectively.Conclusion(s)The novel fully automated Elecsys AMH assay shows good correlations with age and AFC in women of reproductive age, providing a reproducible measure of the growing follicle pool

    A review of the impacts of degradation threats on soil properties in the UK

    Get PDF
    National governments are becoming increasingly aware of the importance of their soil resources and are shaping strategies accordingly. Implicit in any such strategy is that degradation threats and their potential effect on important soil properties and functions are defined and understood. In this paper, we aimed to review the principal degradation threats on important soil properties in the UK, seeking quantitative data where possible. Soil erosion results in the removal of important topsoil and, with it, nutrients, C and porosity. A decline in soil organic matter principally affects soil biological and microbiological properties, but also impacts on soil physical properties because of the link with soil structure. Soil contamination affects soil chemical properties, affecting nutrient availability and degrading microbial properties, whilst soil compaction degrades the soil pore network. Soil sealing removes the link between the soil and most of the ‘spheres’, significantly affecting hydrological and microbial functions, and soils on re-developed brownfield sites are typically degraded in most soil properties. Having synthesized the literature on the impact on soil properties, we discuss potential subsequent impacts on the important soil functions, including food and fibre production, storage of water and C, support for biodiversity, and protection of cultural and archaeological heritage. Looking forward, we suggest a twin approach of field-based monitoring supported by controlled laboratory experimentation to improve our mechanistic understanding of soils. This would enable us to better predict future impacts of degradation processes, including climate change, on soil properties and functions so that we may manage soil resources sustainably

    Breeding for increased nitrogen-use efficiency: a review for wheat (T. aestivum L.)

    Get PDF
    Nitrogen fertilizer is the most used nutrient source in modern agriculture and represents significant environmental and production costs. In the meantime, the demand for grain increases and production per area has to increase as new cultivated areas are scarce. In this context, breeding for an efficient use of nitrogen became a major objective. In wheat, nitrogen is required to maintain a photosynthetically active canopy ensuring grain yield and to produce grain storage proteins that are generally needed to maintain a high end-use quality. This review presents current knowledge of physiological, metabolic and genetic factors influencing nitrogen uptake and utilization in the context of different nitrogen management systems. This includes the role of root system and its interactions with microorganisms, nitrate assimilation and its relationship with photosynthesis as postanthesis remobilization and nitrogen partitioning. Regarding nitrogen-use efficiency complexity, several physiological avenues for increasing it were discussed and their phenotyping methods were reviewed. Phenotypic and molecular breeding strategies were also reviewed and discussed regarding nitrogen regimes and genetic diversity

    Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models?

    Get PDF
    Cardiac electrophysiology models have been developed for over 50 years, and now include detailed descriptions of individual ion currents and sub-cellular calcium handling. It is commonly accepted that there are many uncertainties in these systems, with quantities such as ion channel kinetics or expression levels being difficult to measure or variable between samples. Until recently, the original approach of describing model parameters using single values has been retained, and consequently the majority of mathematical models in use today provide point predictions, with no associated uncertainty. In recent years, statistical techniques have been developed and applied in many scientific areas to capture uncertainties in the quantities that determine model behaviour, and to provide a distribution of predictions which accounts for this uncertainty. In this paper we discuss this concept, which is termed uncertainty quantification, and consider how it might be applied to cardiac electrophysiology models. We present two case studies in which probability distributions, instead of individual numbers, are inferred from data to describe quantities such as maximal current densities. Then we show how these probabilistic representations of model parameters enable probabilities to be placed on predicted behaviours. We demonstrate how changes in these probability distributions across data sets offer insight into which currents cause beat-to-beat variability in canine APs. We conclude with a discussion of the challenges that this approach entails, and how it provides opportunities to improve our understanding of electrophysiology
    • 

    corecore