72 research outputs found

    Water-loss dehydration and aging

    Get PDF
    This review defines water-loss and salt-loss dehydration. For older people serum osmolality appears the most appropriate gold standard for diagnosis of water-loss dehydration, but clear signs of early dehydration have not been developed. In older adults, lower muscle mass, reduced kidney function, physical and cognitive disabilities, blunted thirst, and polypharmacy all increase dehydration risk. Cross-sectional studies suggest a water-loss dehydration prevalence of 20-30% in this population. Water-loss dehydration is associated with higher mortality, morbidity and disability in older people, but evidence is still needed that this relationship is causal. There are a variety of ways we may be able to help older people reduce their risk of dehydration by recognising that they are not drinking enough, and being helped to drink more. Strategies to increase fluid intake in residential care homes include identifying and overcoming individual and institutional barriers to drinking, such as being worried about not reaching the toilet in time, physical inability to make or to reach drinks, and reduced social drinking and drinking pleasure. Research needs are discussed, some of which will be addressed by the FP7-funded NU-AGE (New dietary strategies addressing the specific needs of elderly population for a healthy ageing in Europe) trial

    EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013 . Scientific opinion on Dietary Reference Values for fluoride

    Get PDF
    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA) derived Dietary Reference Values (DRVs) for fluoride, which are provided as Adequate Intake (AI) from all sources, including non-dietary sources. Fluoride is not an essential nutrient. Therefore, no Average Requirement for the performance of essential physiological functions can be defined. Nevertheless, the Panel considered that the setting of an AI is appropriate because of the beneficial effects of dietary fluoride on prevention of dental caries. The AI is based on epidemiological studies (performed before the 1970s) showing an inverse relationship between the fluoride concentration of water and caries prevalence. As the basis for defining the AI, estimates of mean fluoride intakes of children via diet and drinking water with fluoride concentrations at which the caries preventive effect approached its maximum whilst the risk of dental fluorosis approached its minimum were chosen. Except for one confirmatory longitudinal study in US children, more recent studies were not taken into account as they did not provide information on total dietary fluoride intake, were potentially confounded by the use of fluoride-containing dental hygiene products, and did not permit a conclusion to be drawn on a dose-response relationship between fluoride intake and caries risk. The AI of fluoride from all sources (including non-dietary sources) is 0.05 mg/kg body weight per day for both children and adults, including pregnant and lactating women. For pregnant and lactating women, the AI is based on the body weight before pregnancy and lactation. Reliable and representative data on the total fluoride intake of the European population are not available

    EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on principles for deriving and applying Dietary Reference Values

    Get PDF
    This Opinion of the EFSA Panel on Dietetic products, Nutrition, and Allergies (NDA) deals with the general principles for development and application of Dietary Reference Values (DRVs). These quantitative reference values for nutrient intakes for healthy individuals and populations are based on health criteria. Derived from DRVs, nutrients goals and recommendations take into account other criteria such as food composition or dietary habits, and may be used for assessment and planning of diets. It is proposed to derive the following DRVs: 1) Population Reference Intakes (PRI), 2) Average Requirement (AR), 3) Lower Threshold Intake (LTI), 4) Adequate Intake (AI), 5) Reference Intake ranges for macronutrients (RI). Nutrient requirements differ with age, sex and physiological condition. The Panel proposes to define the age ranges used for each nutrient on a case-by-case basis depending on the available data. For the age group < 6 months requirements are considered to be equal to the supply from breast- milk, except in those cases where this does not apply. Separate reference values will be established for pregnant and lactating women. Interpolation or extrapolation between population groups will be used in instances where no data are available for defined age and sex groups

    EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA); Scientific Opinion on Dietary reference values for water

    Get PDF
    This Opinion of the EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA) deals with the setting of dietary reference values for water for specific age groups. Adequate Intakes (AI) have been defined derived from a combination of observed intakes in population groups with desirable osmolarity values of urine and desirable water volumes per energy unit consumed. The reference values for total water intake include water from drinking water, beverages of all kind, and from food moisture and only apply to conditions of moderate environmental temperature and moderate physical activity levels (PAL 1.6). AIs for infants in the first half of the first year of life are estimated to be 100-190 mL/kg per day. For infants 6-12 months of age a total water intake of 800-1000 mL/day is considered adequate. For the second year of life an adequate total water intake of 1100-1200 mL/day is defined by interpolation, as intake data are not available. AIs of water for children are estimated to be 1300 mL/day for boys and girls 2-3 years of age; 1600 mL/day for boys and girls 4-8 years of age; 2100 mL/day for boys 9-13 years of age; 1900 mL/day for girls 9-13 years of age. Adolescents of 14 years and older are considered as adults with respect to adequate water intake. Available data for adults permit the definition of AIs as 2.0 L/day (P 95 3.1 L) for females and 2.5 L/day (P95 4.0 L) for males. The same AIs as for adults are defined for the elderly. For pregnant women the same water intake as in non-pregnant women plus an increase in proportion to the increase in energy intake (300 mL/day) is proposed. For lactating women adequate water intakes of about 700 mL/day above the AIs of non-lactating women of the same age are derive

    EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013 . Scientific O pinion on Dietary Reference Values for molybdenum

    Get PDF
    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA) derived Dietary Reference Values (DRVs) for molybdenum. Molybdenum is efficiently and rapidly absorbed at a wide range of intakes, and the body is able to maintain homeostasis through the regulation of excretion via the urine. Molybdenum deficiency in otherwise healthy humans has not been observed and there are no biomarkers of molybdenum status. Various metabolic balance studies have been performed to establish molybdenum requirements. However, only one balance study, which was performed with a constant diet and under controlled conditions in adult men, was considered to be of sufficient duration. In this small study, balance was reported to be near zero when molybdenum intakes were 22 ”g/day. Biochemical changes or symptoms suggestive of molybdenum deficiency were not observed, and it is possible that humans may be able to achieve molybdenum balance at even lower intakes. Data on molybdenum intakes and health outcomes were unavailable for the setting of DRVs for molybdenum. As the evidence required to derive an Average Requirement and a Population Reference Intake was considered insufficient, an Adequate Intake (AI) is proposed. Observed molybdenum intakes from mixed diets in Europe were taken into consideration in setting this value. An AI of 65 ”g/day is proposed for adults; a figure that is based on molybdenum intakes at the lower end of the wide range of observed intakes. It is suggested that the adult AI also applies to pregnant and lactating women. An AI is also proposed for infants from seven months and for children based on extrapolation from the adult AI using isometric scaling and the reference body weights of the respective age groups

    EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on Dietary Reference Values for vitamin C

    Get PDF

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion related to the Tolerable Upper Intake Level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA)

    Get PDF
    &lt;p&gt;Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies was asked to deliver a scientific opinion on the Tolerable Upper Intake Level (UL) of the n-3 LCPUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). Available data are insufficient to establish a UL for n-3 LCPUFA (individually or combined) for any population group. At observed intake levels, consumption of n-3 LCPUFA has not been associated with adverse effects in healthy children or adults. Long-term supplemental intakes of EPA and DHA combined up to about 5 g/day do not appear to increase the risk of spontaneous bleeding episodes or bleeding complications, or affect glucose homeostasis immune function or lipid peroxidation, provided the oxidative stability of the n-3 LCPUFAs is guaranteed. Supplemental intakes of EPA and DHA combined at doses of 2 6 g/day, and of DHA at doses of 2 4 g/day, induce an increase in LDL-cholesterol concentrations of about 3 % which may not have an adverse effect on cardiovascular disease risk, whereas EPA at doses up to 4 g/day has no significant effect on LDL cholesterol. Supplemental intakes of EPA and DHA combined at doses up to 5 g/day, and supplemental intakes of EPA alone up to 1.8 g/day, do not raise safety concerns for adults. Dietary recommendations for EPA and DHA based on cardiovascular risk considerations for European adults are between 250 and 500 mg/day. Supplemental intakes of DHA alone up to about 1 g/day do not raise safety concerns for the general population. No data are available for DPA when consumed alone. In the majority of the human studies considered, fish oils, also containing DPA in generally unknown (but relatively low) amounts, were the source of EPA and DHA.&lt;/p&gt

    EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2013. Scientific Opinion on Dietary Reference Values for manganese

    Get PDF

    EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on Dietary Reference Values for protein

    Get PDF
    This opinion of the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) deals with the setting of Dietary Reference Values (DRVs) for protein. The Panel concludes that a Population Reference Intake (PRI) can be derived from nitrogen balance studies. Several health outcomes possibly associated with protein intake were also considered but data were found to be insufficient to establish DRVs. For healthy adults of both sexes, the average requirement (AR) is 0.66 g protein/kg body weight per day based on nitrogen balance data. Considering the 97.5th percentile of the distribution of the requirement and assuming an efficiency of utilisation of dietary protein for maintenance of 47 %, the PRI for adults of all ages was estimated to be 0.83 g protein/kg body weight per day and is applicable both to high quality protein and to protein in mixed diets. For children from six months onwards, age-dependent requirements for growth estimated from average daily rates of protein deposition and adjusted by a protein efficiency for growth of 58 % were added to the requirement for maintenance of 0.66 g/kg body weight per day. The PRI was estimated based on the average requirement plus 1.96 SD using a combined SD for growth and maintenance.For pregnancy, an intake of 1, 9 and 28 g/d in the first, second and third trimesters, respectively, is proposed in addition to the PRI for non-pregnant women. For lactation, a protein intake of 19 g/d during the first six months, and of 13 g/d after six months, is proposed in addition to the PRI for non-lactating women. Data are insufficient to establish a Tolerable Upper Intake Level (UL) for protein. Intakes up to twice the PRI are regularly consumed from mixed diets by some physically active and healthy adults in Europe and are considered safe
    • 

    corecore