68 research outputs found

    Recreational sea fishing in Europe in a global contextParticipation rates, fishing effort, expenditure, and implications for monitoring and assessment

    Get PDF
    Marine recreational fishing (MRF) is a high-participation activity with large economic value and social benefits globally, and it impacts on some fish stocks. Although reporting MRF catches is a European Union legislative requirement, estimates are only available for some countries. Here, data on numbers of fishers, participation rates, days fished, expenditures, and catches of two widely targeted species were synthesized to provide European estimates of MRF and placed in the global context. Uncertainty assessment was not possible due to incomplete knowledge of error distributions; instead, a semi-quantitative bias assessment was made. There were an estimated 8.7 million European recreational sea fishers corresponding to a participation rate of 1.6%. An estimated 77.6 million days were fished, and expenditure was Euro5.9 billion annually. There were higher participation, numbers of fishers, days fished and expenditure in the Atlantic than the Mediterranean, but the Mediterranean estimates were generally less robust. Comparisons with other regions showed that European MRF participation rates and expenditure were in the mid-range, with higher participation in Oceania and the United States, higher expenditure in the United States, and lower participation and expenditure in South America and Africa. For both northern European sea bass (Dicentrarchus labrax, Moronidae) and western Baltic cod (Gadus morhua, Gadidae) stocks, MRF represented 27% of the total removals. This study highlights the importance of MRF and the need for bespoke, regular and statistically sound data collection to underpin European fisheries management. Solutions are proposed for future MRF data collection in Europe and other regions to support sustainable fisheries management.Institut Francais de Recherche pour l'Exploitation de la Mer; French Ministry of Fisheries Management; Greek National Data Collection Programme; European Commission, Data Collection Framework; Department for Environment, Food and Rural Affairs [MF1221, MF1230, MI001]; Norges Forskningsrad [267808]; State Department of Agriculture, Food Security and Fisheries Mecklenburg-Western Pomerania; Interreg IVa 2 Seas; Dutch Ministry of Economic Affairs; European Fishery Fund; Government of Galicia [ED481B2014/034-0

    Broad targeting of resistance to apoptosis in cancer

    Get PDF
    Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer

    New factors for protein transport identified by a genome-wide CRISPRi screen in mammalian cells

    Get PDF
    Protein and membrane trafficking pathways are critical for cell and tissue homeostasis. Traditional genetic and biochemical approaches have shed light on basic principles underlying these processes. However, the list of factors required for secretory pathway function remains incomplete, and mechanisms involved in their adaptation poorly understood. Here, we present a powerful strategy based on a pooled genome-wide CRISPRi screen that allowed the identification of new factors involved in protein transport. Two newly identified factors, TTC17 and CCDC157, localized along the secretory pathway and were found to interact with resident proteins of ER-Golgi membranes. In addition, we uncovered that upon TTC17 knockdown, the polarized organization of Golgi cisternae was altered, creating glycosylation defects, and that CCDC157 is an important factor for the fusion of transport carriers to Golgi membranes. In conclusion, our work identified and characterized new actors in the mechanisms of protein transport and secretion, and opens stimulating perspectives for the use of our platform in physiological and pathological contexts.Includes Wellcome Trust, MRC and H202

    Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology

    Get PDF
    Abstract: Between 6–20% of the cellular proteome is under circadian control and tunes mammalian cell function with daily environmental cycles. For cell viability, and to maintain volume within narrow limits, the daily variation in osmotic potential exerted by changes in the soluble proteome must be counterbalanced. The mechanisms and consequences of this osmotic compensation have not been investigated before. In cultured cells and in tissue we find that compensation involves electroneutral active transport of Na+, K+, and Cl− through differential activity of SLC12A family cotransporters. In cardiomyocytes ex vivo and in vivo, compensatory ion fluxes confer daily variation in electrical activity. Perturbation of soluble protein abundance has commensurate effects on ion composition and cellular function across the circadian cycle. Thus, circadian regulation of the proteome impacts ion homeostasis with substantial consequences for the physiology of electrically active cells such as cardiomyocytes

    International evidence-based consensus diagnostic and treatment guidelines for unicentric Castleman disease.

    Get PDF
    Castleman disease (CD) includes a group of rare and heterogeneous disorders with characteristic lymph node histopathological abnormalities. CD can occur in a single lymph node station, which is referred to as unicentric CD (UCD). CD can also involve multicentric lymphadenopathy and inflammatory symptoms (multicentric CD [MCD]). MCD includes human herpesvirus-8 (HHV-8)-associated MCD, POEMS-associated MCD, and HHV-8-/idiopathic MCD (iMCD). The first-ever diagnostic and treatment guidelines were recently developed for iMCD by an international expert consortium convened by the Castleman Disease Collaborative Network (CDCN). The focus of this report is to establish similar guidelines for the management of UCD. To this purpose, an international working group of 42 experts from 10 countries was convened to establish consensus recommendations based on review of treatment in published cases of UCD, the CDCN ACCELERATE registry, and expert opinion. Complete surgical resection is often curative and is therefore the preferred first-line therapy, if possible. The management of unresectable UCD is more challenging. Existing evidence supports that asymptomatic unresectable UCD may be observed. The anti-interleukin-6 monoclonal antibody siltuximab should be considered for unresectable UCD patients with an inflammatory syndrome. Unresectable UCD that is symptomatic as a result of compression of vital neighboring structures may be rendered amenable to resection by medical therapy (eg, rituximab, steroids), radiotherapy, or embolization. Further research is needed in UCD patients with persisting constitutional symptoms despite complete excision and normal laboratory markers. We hope that these guidelines will improve outcomes in UCD and help treating physicians decide the best therapeutic approach for their patients

    Effect of Internet-Based Cognitive Behavioral Humanistic and Interpersonal Training vs Internet-Based General Health Education on Adolescent Depression in Primary Care

    Full text link
    Importance: Although 13% to 20% of American adolescents experience a depressive episode annually, no scalable primary care model for adolescent depression prevention is currently available. Objective: To study whether competent adulthood transition with cognitive behavioral humanistic and interpersonal training (CATCH-IT) lowers the hazard for depression in at-risk adolescents identified in primary care, as compared with a general health education (HE) attention control. Design, Setting, and Participants: This multicenter, randomized clinical trial, a phase 3 single-blind study, compares CATCH-IT with HE. Participants were enrolled from 2012 to 2016 and assessed at 2, 6, 12, 18, and 24 months postrandomization in a primary care setting. Eligible adolescents were aged 13 to 18 years with subsyndromal depression and/or history of depression and no current depression diagnosis or treatment. Of 2250 adolescents screened for eligibility, 446 participants completed the baseline interview, and 369 were randomized into CATCH-IT (n = 193) and HE (n = 176). Interventions: The internet-based intervention, CATCH-IT, is a 20-module (15 adolescent modules and 5 parent modules) online psychoeducation course that includes a parent program, supported by 3 motivational interviews. Main Outcomes and Measures: Time to event for depressive episode; depressive symptoms at 6 months. Results: Of 369 participants (mean [SD] age, 15.4 [1.5] years; 251 women [68%]) included in this trial, 193 were randomized into CATCH-IT and 176 into HE. Among these participants, 28% had both a past episode and subsyndromal depression; 12% had a past episode only, 59% had subsyndromal depression only, and 1% had borderline subsyndromal depression. The outcome of time to event favored CATCH-IT but was not significant with intention-to-treat analyses (unadjusted hazard ratio [HR], 0.59; 95% CI, 0.27-1.29; P = .18; adjusted HR, 0.53; 95% CI, 0.23-1.23; P = .14). Adolescents with higher baseline Center for Epidemiologic Studies Depression scale (CES-D ) scores showed a significantly stronger effect of CATCH-IT on time to event relative to those with lower baseline scores (HR 0.82; 95% CI, 0.67-0.99; P = .04). For example, the hazard ratio for a CES-D score of 15 was 0.20 (95% CI, 0.05-0.77), compared with a hazard ratio of 1.44 (95% CI, 0.41-5.03) for a CES-D score of 5. In both CATCH-IT and HE groups, depression symptoms declined and functional scores increased. Conclusions and Relevance: For preventing depressive episodes CATCH-IT may be better than HE for at-risk adolescents with subsyndromal depression. Also CATCH-IT may be a scalable approach to prevent depressive episodes in adolescents in primary care

    Mechanism of eIF6 release from the nascent 60S ribosomal subunit.

    Get PDF
    SBDS protein (deficient in the inherited leukemia-predisposition disorder Shwachman-Diamond syndrome) and the GTPase EFL1 (an EF-G homolog) activate nascent 60S ribosomal subunits for translation by catalyzing eviction of the antiassociation factor eIF6 from nascent 60S ribosomal subunits. However, the mechanism is completely unknown. Here, we present cryo-EM structures of human SBDS and SBDS-EFL1 bound to Dictyostelium discoideum 60S ribosomal subunits with and without endogenous eIF6. SBDS assesses the integrity of the peptidyl (P) site, bridging uL16 (mutated in T-cell acute lymphoblastic leukemia) with uL11 at the P-stalk base and the sarcin-ricin loop. Upon EFL1 binding, SBDS is repositioned around helix 69, thus facilitating a conformational switch in EFL1 that displaces eIF6 by competing for an overlapping binding site on the 60S ribosomal subunit. Our data reveal the conserved mechanism of eIF6 release, which is corrupted in both inherited and sporadic leukemias.Supported by a Federation of European Biochemical Societies Long term Fellowship (to FW), Specialist Programme from Bloodwise [12048] (AJW), the Medical Research Council [MC_U105161083] (AJW) and [U105115237] (RRK), Wellcome Trust strategic award to the Cambridge Institute for Medal Research [100140], Tesni Parry Trust (AJW), Ted’s Gang (AJW) and the Cambridge NIHR Biomedical Research Centre.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nsmb.311
    • 

    corecore