1,500 research outputs found

    A scoping review of mathematical models of Plasmodium vivax

    Full text link
    Plasmodium vivax is one of the most geographically widespread malaria parasites in the world due to its ability to remain dormant in the human liver as hypnozoites and subsequently reactivate after the initial infection (i.e. relapse infections). More than 80% of P. vivax infections are due to hypnozoite reactivation. Mathematical modelling approaches have been widely applied to understand P. vivax dynamics and predict the impact of intervention outcomes. In this article, we provide a scoping review of mathematical models that capture P. vivax transmission dynamics published between January 1988 and May 2023 to provide a comprehensive summary of the mathematical models and techniques used to model P. vivax dynamics. We aim to assist researchers working on P. vivax transmission and other aspects of P. vivax malaria by highlighting best practices in currently published models and highlighting where future model development is required. We provide an overview of the different strategies used to incorporate the parasite's biology, use of multiple scales (within-host and population-level), superinfection, immunity, and treatment interventions. In most of the published literature, the rationale for different modelling approaches was driven by the research question at hand. Some models focus on the parasites' complicated biology, while others incorporate simplified assumptions to avoid model complexity. Overall, the existing literature on mathematical models for P. vivax encompasses various aspects of the parasite's dynamics. We recommend that future research should focus on refining how key aspects of P. vivax dynamics are modelled, including the accumulation of hypnozoite variation, the interaction between P. falciparum and P. vivax, acquisition of immunity, and recovery under superinfection

    A model for malaria treatment evaluation in the presence of multiple species

    Full text link
    Plasmodium (P.) falciparum and P. vivax are the two most common causes of malaria. While the majority of deaths and severe morbidity are due to P. falciparum, P. vivax poses a greater challenge to eliminating malaria outside of Africa due to its ability to form latent liver stage parasites (hypnozoites), which can cause relapsing episodes within an individual patient. In areas where P. falciparum and P. vivax are co-endemic, individuals can carry parasites of both species simultaneously. These mixed infections complicate dynamics in several ways; treatment of mixed infections will simultaneously affect both species, P. falciparum can mask the detection of P. vivax, and it has been hypothesised that clearing P. falciparum may trigger a relapse of dormant P. vivax. When mixed infections are treated for only blood-stage parasites, patients are at risk of relapse infections due to P. vivax hypnozoites. We present a stochastic mathematical model that captures interactions between P. falciparum and P. vivax, and incorporates both standard schizontocidal treatment (which targets blood-stage parasites) and radical treatment (which additionally targets liver-stage parasites). We apply this model to assess the implications of different treatment coverage of radical cure for mixed and P. vivax infections and a so-called "unified radical cure" treatment strategy for P. falciparum, P. vivax and mixed infections. We find that a unified radical cure strategy, with G6PD screening, leads to a substantially lower incidence of malaria cases and deaths overall. We perform a one-way sensitivity analysis to highlight important model parameters

    Dark Matter and Fundamental Physics with the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) is a project for a next-generation observatory for very high energy (GeV-TeV) ground-based gamma-ray astronomy, currently in its design phase, and foreseen to be operative a few years from now. Several tens of telescopes of 2-3 different sizes, distributed over a large area, will allow for a sensitivity about a factor 10 better than current instruments such as H.E.S.S, MAGIC and VERITAS, an energy coverage from a few tens of GeV to several tens of TeV, and a field of view of up to 10 deg. In the following study, we investigate the prospects for CTA to study several science questions that influence our current knowledge of fundamental physics. Based on conservative assumptions for the performance of the different CTA telescope configurations, we employ a Monte Carlo based approach to evaluate the prospects for detection. First, we discuss CTA prospects for cold dark matter searches, following different observational strategies: in dwarf satellite galaxies of the Milky Way, in the region close to the Galactic Centre, and in clusters of galaxies. The possible search for spatial signatures, facilitated by the larger field of view of CTA, is also discussed. Next we consider searches for axion-like particles which, besides being possible candidates for dark matter may also explain the unexpectedly low absorption by extragalactic background light of gamma rays from very distant blazars. Simulated light-curves of flaring sources are also used to determine the sensitivity to violations of Lorentz Invariance by detection of the possible delay between the arrival times of photons at different energies. Finally, we mention searches for other exotic physics with CTA.Comment: (31 pages, Accepted for publication in Astroparticle Physics

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of associated Z plus charm production in proton-proton collisions at root s=8TeV

    Get PDF
    A study of the associated production of a Z boson and a charm quark jet (Z + c), and a comparison to production with a b quark jet (Z + b), in pp collisions at a centre-of-mass energy of 8 TeV are presented. The analysis uses a data sample corresponding to an integrated luminosity of 19.7 fb(-1), collected with the CMS detector at the CERN LHC. The Z boson candidates are identified through their decays into pairs of electrons or muons. Jets originating from heavy flavour quarks are identified using semileptonic decays of c or b flavoured hadrons and hadronic decays of charm hadrons. The measurements are performed in the kinematic region with two leptons with pT(l) > 20 GeV, vertical bar eta(l)vertical bar 25 GeV and vertical bar eta(jet)vertical bar Z + c + X) B(Z -> l(+)l(-)) = 8.8 +/- 0.5 (stat)+/- 0.6 (syst) pb. The ratio of the Z+c and Z+b production cross sections is measured to be sigma(pp -> Z+c+X)/sigma (pp -> Z+b+X) = 2.0 +/- 0.2 (stat)+/- 0.2 (syst). The Z+c production cross section and the cross section ratio are also measured as a function of the transverse momentum of theZ boson and of the heavy flavour jet. The measurements are compared with theoretical predictions.Peer reviewe

    Measurement of the underlying event activity in inclusive Z boson production in proton-proton collisions at root s=13 TeV

    Get PDF
    This paper presents a measurement of the underlying event activity in proton-proton collisions at a center-of-mass energy of 13TeV, performed using inclusive Z boson production events collected with the CMS experiment at the LHC. The analyzed data correspond to an integrated luminosity of 2.1 fb(-1). The underlying event activity is quantified in terms of the charged particle multiplicity, as well as of the scalar sum of the charged particles' transverse momenta in different topological regions defined with respect to the Z boson direction. The distributions are unfolded to the stable particle level and compared with predictions from various Monte Carlo event generators, as well as with similar CDF and CMS measurements at center-of-mass energies of 1.96 and 7TeV respectively.Peer reviewe

    Search for a singly produced third-generation scalar leptoquark decaying to a tau lepton and a bottom quark in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for a singly produced third-generation scalar leptoquark decaying to a tau lepton and a bottom quark. Associated production of a leptoquark and a tau lepton is considered, leading to a final state with a bottom quark and two tau leptons. The search uses proton-proton collision data at a center-of-mass energy of 13 TeV recorded with the CMS detector, corresponding to an integrated luminosity of 35.9 fb(-1). Upper limits are set at 95% confidence level on the production cross section of the third-generation scalar leptoquarks as a function of their mass. From a comparison of the results with the theoretical predictions, a third-generation scalar leptoquark decaying to a tau lepton and a bottom quark, assuming unit Yukawa coupling (lambda), is excluded for masses below 740 GeV. Limits are also set on lambda of the hypothesized leptoquark as a function of its mass. Above lambda = 1.4, this result provides the best upper limit on the mass of a third-generation scalar leptoquark decaying to a tau lepton and a bottom quark.Peer reviewe

    Measurement of hadronic event shapes in high-p T multijet final states at √s = 13 TeV with the ATLAS detector

    Get PDF
    A measurement of event-shape variables in proton-proton collisions at large momentum transfer is presented using data collected at s = 13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb−1. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed. [Figure not available: see fulltext.

    Measurement of differential cross sections in the kinematic angular variable phi* for inclusive Z boson production in pp collisions at root s=8 TeV

    Get PDF
    Measurements of differential cross sections d sigma/d phi* and double-differential cross sections d(2)sigma/ld phi*d/y/ for inclusive Z boson production are presented using the dielectron and dimuon final states. The kinematic observable phi* correlates with the dilepton transverse momentum but has better resolution, and y is the dilepton rapidity. The analysis is based on data collected with the CMS experiment at a centre-of-mass energy of 8 TeV corresponding to an integrated luminosity of 19.7 fb(-1). The normalised cross section (1/sigma) d sigma/d phi*, within the fiducial kinematic region, is measured with a precision of better than 0.5% for phi* <1. The measurements are compared to theoretical predictions and they agree, typically, within few percent.Peer reviewe

    A search for the dimuon decay of the Standard Model Higgs boson with the ATLAS detector

    Get PDF
    A search for the dimuon decay of the Standard Model (SM) Higgs boson is performed using data corresponding to an integrated luminosity of 139 fb(-1) collected with the ATLAS detector in Run 2 pp collisions at root s = 13 TeV at the Large Hadron Collider. The observed (expected) significance over the background-only hypothesis for a Higgs boson with a mass of 125.09 GeV is 2.0 sigma (1.7 sigma). The observed upper limit on the cross section times branching ratio for pp -&gt; H -&gt; mu mu is 2.2 times the SM prediction at 95% confidence level, while the expected limit on a H -&gt; mu mu signal assuming the absence (presence) of a SM signal is 1.1(2.0). The best-fit value of the signal strength parameter, defined as the ratio of the observed signal yield to the one expected in the SM, is mu = 1.2 +/- 0.6. (C) 2020 The Author(s). Published by Elsevier B.V
    corecore