279 research outputs found

    Label-free quantitative proteomics of CD133-positive liver cancer stem cells

    Full text link
    Abstract Background CD133-positive liver cancer stem cells, which are characterized by their resistance to conventional chemotherapy and their tumor initiation ability at limited dilutions, have been recognized as a critical target in liver cancer therapeutics. In the current work, we developed a label-free quantitative method to investigate the proteome of CD133-positive liver cancer stem cells for the purpose of identifying unique biomarkers that can be utilized for targeting liver cancer stem cells. Label-free quantitation was performed in combination with ID-based Elution time Alignment by Linear regression Quantitation (IDEAL-Q) and MaxQuant. Results Initially, IDEAL-Q analysis revealed that 151 proteins were differentially expressed in the CD133-positive hepatoma cells when compared with CD133-negative cells. We then analyzed these 151 differentially expressed proteins by MaxQuant software and identified 10 significantly up-regulated proteins. The results were further validated by RT-PCR, western blot, flow cytometry or immunofluorescent staining which revealed that prominin-1, annexin A1, annexin A3, transgelin, creatine kinase B, vimentin, and EpCAM were indeed highly expressed in the CD133-positive hepatoma cells. Conclusions These findings confirmed that mass spectrometry-based label-free quantitative proteomics can be used to gain insights into liver cancer stem cells.http://deepblue.lib.umich.edu/bitstream/2027.42/113089/1/12953_2012_Article_407.pd

    KCNN2 polymorphisms and cardiac tachyarrhythmias

    Get PDF
    Potassium calcium-activated channel subfamily N member 2 (KCNN2) encodes an integral membrane protein that forms small-conductance calcium-activated potassium (SK) channels. Recent studies in animal models show that SK channels are important in atrial and ventricular repolarization and arrhythmogenesis. However, the importance of SK channels in human arrhythmia remains unclear. The purpose of the present study was to test the association between genetic polymorphism of the SK2 channel and the occurrence of cardiac tachyarrhythmias in humans. We enrolled 327 Han Chinese, including 72 with clinically significant ventricular tachyarrhythmias (VTa) who had a history of aborted sudden cardiac death (SCD) or unexplained syncope, 98 with a history of atrial fibrillation (AF), and 144 normal controls. We genotyped 12 representative tag single nucleotide polymorphisms (SNPs) across a 141-kb genetic region containing the KCNN2 gene; these captured the full haplotype information. The rs13184658 and rs10076582 variants of KCNN2 were associated with VTa in both the additive and dominant models (odds ratio [OR] 2.89, 95% confidence interval [CI] = 1.505-5.545, P = 0.001; and OR 2.55, 95% CI = 1.428-4.566, P = 0.002, respectively). After adjustment for potential risk factors, the association remained significant. The population attributable risks of these 2 variants of VTa were 17.3% and 10.6%, respectively. One variant (rs13184658) showed weak but significant association with AF in a dominant model (OR 1.91, CI = 1.025-3.570], P = 0.042). There was a significant association between the KCNN2 variants and clinically significant VTa. These findings suggest an association between KCNN2 and VTa; it also appears that KCNN2 variants may be adjunctive markers for risk stratification in patients susceptible to SCD

    Neurochemical Properties of the Synapses in the Pathways of Orofacial Nociceptive Reflexes

    Get PDF
    The brainstem premotor neurons of the facial nucleus (VII) and hypoglossal (XII) nucleus can integrate orofacial nociceptive input from the caudal spinal trigeminal nucleus (Vc) and coordinate orofacial nociceptive reflex (ONR) responses. However, the synaptoarchitectures of the ONR pathways are still unknown. In the current study, we examined the distribution of GABAergic premotor neurons in the brainstem local ONR pathways, their connections with the Vc projections joining the brainstem ONR pathways and the neurochemical properties of these connections. Retrograde tracer fluoro-gold (FG) was injected into the VII or XII, and anterograde tracer biotinylated dextran amine (BDA) was injected into the Vc. Immunofluorescence histochemical labeling for inhibitory/excitatory neurotransmitters combined with BDA/FG tracing showed that GABAergic premotor neurons were mainly distributed bilaterally in the ponto-medullary reticular formation with an ipsilateral dominance. Some GABAergic premotor neurons made close appositions to the BDA-labeled fibers coming from the Vc, and these appostions were mainly distributed in the parvicellular reticular formation (PCRt), dorsal medullary reticular formation (MdD), and supratrigeminal nucleus (Vsup). We further examined the synaptic relationships between the Vc projecting fibers and premotor neurons in the VII or XII under the confocal laser-scanning microscope and electron microscope, and found that the BDA-labeled axonal terminals that made asymmetric synapses on premotor neurons showed vesicular glutamate transporter 2 (VGluT2) like immunoreactivity. These results indicate that the GABAergic premotor neurons receive excitatory neurotransmission from the Vc and may contribute to modulating the generation of the tonic ONR

    A neural network model for constructing endophenotypes of common complex diseases: an application to male young-onset hypertension microarray data

    Get PDF
    Motivation: Identification of disease-related genes using high-throughput microarray data is more difficult for complex diseases as compared with monogenic ones. We hypothesized that an endophenotype derived from transcriptional data is associated with a set of genes corresponding to a pathway cluster. We assumed that a complex disease is associated with multiple endophenotypes and can be induced by their up/downregulated gene expression patterns. Thus, a neural network model was adopted to simulate the gene–endophenotype–disease relationship in which endophenotypes were represented by hidden nodes

    A phase separation method for analyses of fluoroquinones in meats based on ultrasound-assisted salt-induced liquid–liquid microextraction and a new integrated device

    Full text link
    Herein, we developed a novel integrated device to perform phase separation based on ultrasound-assisted, salt-induced, liquid-liquid microextraction for determination of five fluoroquinones in meats by HPLC analysis. The novel integrated device consisted of three simple HDPE (high density polyethylene) parts that were used to separate the solvent from the aqueous solution prior to retrieving the extractant. The extraction parameters were optimized using the response surface method based on central composite design: 589μL of acetone solvent, pH2.1, 4.1min extraction time and 3.5g of Na2SO4. The limits of detection were 0.056-0.64 μgkg(-1) and recoveries were 87.2-110.6% for the five fluoroquinones in muscle tissue from fish, chicken, pork and beef. This method is easily constructed from inexpensive materials, extraction efficiency is high, and the approach is compatible with HPLC analysis. Thus, it has excellent prospects for sample pre-treatment and analysis of fluoroquinones in meat samples

    Epstein–Barr Virus DNase (BGLF5) induces genomic instability in human epithelial cells

    Get PDF
    Epstein–Barr Virus (EBV) DNase (BGLF5) is an alkaline nuclease and has been suggested to be important in the viral life cycle. However, its effect on host cells remains unknown. Serological and histopathological studies implied that EBV DNase seems to be correlated with carcinogenesis. Therefore, we investigate the effect of EBV DNase on epithelial cells. Here, we report that expression of EBV DNase induces increased formation of micronucleus, an indicator of genomic instability, in human epithelial cells. We also demonstrate, using γH2AX formation and comet assay, that EBV DNase induces DNA damage. Furthermore, using host cell reactivation assay, we find that EBV DNase expression repressed damaged DNA repair in various epithelial cells. Western blot and quantitative PCR analyses reveal that expression of repair-related genes is reduced significantly in cells expressing EBV DNase. Host shut-off mutants eliminate shut-off expression of repair genes and repress damaged DNA repair, suggesting that shut-off function of BGLF5 contributes to repression of DNA repair. In addition, EBV DNase caused chromosomal aberrations and increased the microsatellite instability (MSI) and frequency of genetic mutation in human epithelial cells. Together, we propose that EBV DNase induces genomic instability in epithelial cells, which may be through induction of DNA damage and also repression of DNA repair, subsequently increases MSI and genetic mutations, and may contribute consequently to the carcinogenesis of human epithelial cells

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    An Integrated Proteomic and Glycoproteomic Investigation Reveals Alterations in the N-Glycoproteomic Network Induced by 2-Deoxy-D-Glucose in Colorectal Cancer Cells

    No full text
    As a well-known glycolysis inhibitor for anticancer treatment, 2-Deoxy-D-glucose (2DG) inhibits the growth and survival of cancer cells by interfering with the ATP produced by the metabolism of D-glucose. In addition, 2DG inhibits protein glycosylation in vivo by competing with D-mannose, leading to endoplasmic reticulum (ER) stress and unfolded protein responses in cancer cells. However, the molecular details underlying the impact of 2DG on protein glycosylation remain largely elusive. With an integrated approach to glycoproteomics and proteomics, we characterized the 2DG-induced alterations in N-glycosylation, as well as the cascading impacts on the whole proteome using the HT29 colorectal cancer cell line as a model system. More than 1700 site-specific glycoforms, represented by unique intact glycopeptides (IGPs), were identified. The treatment of 2DG had a broad effect on the N-glycoproteome, especially the high-mannose types. The glycosite occupancy of the high-mannose N-glycans decreased the most compared with the sialic acid and fucose-containing N-glycans. Many of the proteins with down-regulated high-mannose were implicated in functional networks related to response to topologically incorrect protein, integrin-mediated signaling, lysosomal transport, protein hydroxylation, vacuole, and protein N-glycosylation. The treatment of 2DG also functionally disrupted the global cellular proteome, evidenced by significant up-regulation of the proteins implicated in protein folding, endoplasmic reticulum, mitochondrial function, cellular respiration, oxidative phosphorylation, and translational termination. Taken together, these findings reveal the complex changes in protein glycosylation and expression underlying the various effects of 2DG on cancer cells, and may provide insightful clues to inform therapeutic development targeting protein glycosylation

    Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.

    Get PDF
    Epstein-Barr virus (EBV) Rta belongs to a lytic switch gene family that is evolutionarily conserved in all gamma-herpesviruses. Emerging evidence indicates that cell cycle arrest is a common means by which herpesviral immediate-early protein hijacks the host cell to advance the virus's lytic cycle progression. To examine the role of Rta in cell cycle regulation, we recently established a doxycycline (Dox)-inducible Rta system in 293 cells. In this cell background, inducible Rta modulated the levels of signature G1 arrest proteins, followed by induction of the cellular senescence marker, SA-β-Gal. To delineate the relationship between Rta-induced cell growth arrest and EBV reactivation, recombinant viral genomes were transferred into Rta-inducible 293 cells. Somewhat unexpectedly, we found that Dox-inducible Rta reactivated both EBV and Kaposi's sarcoma-associated herpesvirus (KSHV), to similar efficacy. As a consequence, the Rta-mediated EBV and KSHV lytic replication systems, designated as EREV8 and ERKV, respectively, were homogenous, robust, and concurrent with cell death likely due to permissive lytic replication. In addition, the expression kinetics of EBV lytic genes in Dox-treated EREV8 cells was similar to that of their KSHV counterparts in Dox-induced ERKV cells, suggesting that a common pathway is used to disrupt viral latency in both cell systems. When the time course was compared, cell cycle arrest was achieved between 6 and 48 h, EBV or KSHV reactivation was initiated abruptly at 48 h, and the cellular senescence marker was not detected until 120 h after Dox treatment. These results lead us to hypothesize that in 293 cells, Rta-induced G1 cell cycle arrest could provide (1) an ideal environment for virus reactivation if EBV or KSHV coexists and (2) a preparatory milieu for cell senescence if no viral genome is available. The latter is hypothetical in a transient-lytic situation
    corecore